主要学习了Andrew Ng的公开课 machine learning 之Linear Regression,其exercise网址如下
http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex2/ex2.html
编写的代码如下:
%%%%%%%%%%%%%%%%%%%%%%%%Linear regression
clear all; close all; clc
x = load('ex2x.dat');
y = load('ex2y.dat');
figure % open a new figure window
plot(x, y, 'o');
ylabel('Height in meters')
xlabel('Age in years')
m = length(y); % store the number of training examples 样本数量
x = [ones(m, 1), x]; % Add a column of ones to x
theta=zeros(2,1);
alpha=0.07;% learning rate
for inter=1:1500 % 迭代次数
h_theta=x*theta;
theta=theta-alpha/m*x'*(h_theta-y);
end
hold on % Plot new data without clearing old plot
plot(x(:,2), x*theta, '-') % remember that x is now a matrix with 2 columns
% and the second column contains the time info
legend('Training data', 'Linear regression')
%%%%%%%%%%%%%%%%%%%%%%%% Understanding J(theta)
J_vals = zeros(100, 100); % initialize Jvals to 100x100 matrix of 0's
theta0_vals = linspace(-3, 3, 100);
theta1_vals = linspace(-1, 1, 100);
for i = 1:length(theta0_vals)
for j = 1:length(theta1_vals)
t = [theta0_vals(i); theta1_vals(j)];
J_vals(i,j) = 1/2/m*sum((theta0_vals(i)+theta1_vals(j)*x(:,2)-y(:)).^2);
end
end
% Plot the surface plot
% Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals';
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1')
% Plot the cost function with 15 contours spaced logarithmically
% between 0.01 and 100
figure;
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 2, 15))
xlabel('\theta_0'); ylabel('\theta_1')