luyaran的博客

一名php小菜鸟的成长故事

[Python]网络爬虫(七):Python中的正则表达式教程

接下来准备用糗百做一个爬虫的小例子。

但是在这之前,先详细的整理一下Python中的正则表达式的相关内容。

正则表达式在Python爬虫中的作用就像是老师点名时用的花名册一样,是必不可少的神兵利器。


以下内容转自CNBLOG:http://www.cnblogs.com/huxi/archive/2010/07/04/1771073.html

整理时没有注意,实在抱歉。


一、 正则表达式基础

1.1.概念介绍

正则表达式是用于处理字符串的强大工具,它并不是Python的一部分。

其他编程语言中也有正则表达式的概念,区别只在于不同的编程语言实现支持的语法数量不同。

它拥有自己独特的语法以及一个独立的处理引擎,在提供了正则表达式的语言里,正则表达式的语法都是一样的。

下图展示了使用正则表达式进行匹配的流程:

正则表达式的大致匹配过程是:

1.依次拿出表达式和文本中的字符比较,

2.如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。

3.如果表达式中有量词或边界,这个过程会稍微有一些不同。

下图列出了Python支持的正则表达式元字符和语法:  



1.2. 数量词的贪婪模式与非贪婪模式

正则表达式通常用于在文本中查找匹配的字符串。

贪婪模式,总是尝试匹配尽可能多的字符;

非贪婪模式则相反,总是尝试匹配尽可能少的字符。

Python里数量词默认是贪婪的。

例如:正则表达式"ab*"如果用于查找"abbbc",将找到"abbb"。

而如果使用非贪婪的数量词"ab*?",将找到"a"。


1.3. 反斜杠的问题

与大多数编程语言相同,正则表达式里使用"\"作为转义字符,这就可能造成反斜杠困扰。

假如你需要匹配文本中的字符"\",那么使用编程语言表示的正则表达式里将需要4个反斜杠"\\\\":

第一个和第三个用于在编程语言里将第二个和第四个转义成反斜杠,

转换成两个反斜杠\\后再在正则表达式里转义成一个反斜杠用来匹配反斜杠\。

这样显然是非常麻烦的。

Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r"\\"表示。

同样,匹配一个数字的"\\d"可以写成r"\d"。

有了原生字符串,妈妈再也不用担心我的反斜杠问题~



二、 介绍re模块

2.1.  Compile

Python通过re模块提供对正则表达式的支持。

使用re的一般步骤是:

Step1先将正则表达式的字符串形式编译为Pattern实例。

Step2然后使用Pattern实例处理文本并获得匹配结果(一个Match实例)。

Step3:最后使用Match实例获得信息,进行其他的操作。

我们新建一个re01.py来试验一下re的应用

[python] view plain copy
  1. # -*- coding: utf-8 -*-  
  2. #一个简单的re实例,匹配字符串中的hello字符串  
  3.   
  4. #导入re模块  
  5. import re  
  6.    
  7. # 将正则表达式编译成Pattern对象,注意hello前面的r的意思是“原生字符串”  
  8. pattern = re.compile(r'hello')  
  9.    
  10. # 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None  
  11. match1 = pattern.match('hello world!')  
  12. match2 = pattern.match('helloo world!')  
  13. match3 = pattern.match('helllo world!')  
  14.   
  15. #如果match1匹配成功  
  16. if match1:  
  17.     # 使用Match获得分组信息  
  18.     print match1.group()  
  19. else:  
  20.     print 'match1匹配失败!'  
  21.   
  22.   
  23. #如果match2匹配成功  
  24. if match2:  
  25.     # 使用Match获得分组信息  
  26.     print match2.group()  
  27. else:  
  28.     print 'match2匹配失败!'  
  29.   
  30.   
  31. #如果match3匹配成功  
  32. if match3:  
  33.     # 使用Match获得分组信息  
  34.     print match3.group()  
  35. else:  
  36.     print 'match3匹配失败!'  

可以看到控制台输出了匹配的三个结果:

下面来具体看看代码中的关键方法。

★ re.compile(strPattern[, flag]):

这个方法是Pattern类的工厂方法,用于将字符串形式的正则表达式编译为Pattern对象。

第二个参数flag是匹配模式,取值可以使用按位或运算符'|'表示同时生效,比如re.I | re.M。

另外,你也可以在regex字符串中指定模式,

比如re.compile('pattern', re.I | re.M)与re.compile('(?im)pattern')是等价的。

可选值有:

  •     re.I(全拼:IGNORECASE): 忽略大小写(括号内是完整写法,下同)
  •    re.M(全拼:MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
  •     re.S(全拼:DOTALL): 点任意匹配模式,改变'.'的行为
  •     re.L(全拼:LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
  •     re.U(全拼:UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
  •     re.X(全拼:VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。


以下两个正则表达式是等价的:

[python] view plain copy
  1. # -*- coding: utf-8 -*-  
  2. #两个等价的re匹配,匹配一个小数  
  3. import re  
  4.   
  5. a = re.compile(r"""\d +  # the integral part 
  6.                    \.    # the decimal point 
  7.                    \d *  # some fractional digits""", re.X)  
  8.   
  9. b = re.compile(r"\d+\.\d*")  
  10.   
  11. match11 = a.match('3.1415')  
  12. match12 = a.match('33')  
  13. match21 = b.match('3.1415')  
  14. match22 = b.match('33')   
  15.   
  16. if match11:  
  17.     # 使用Match获得分组信息  
  18.     print match11.group()  
  19. else:  
  20.     print u'match11不是小数'  
  21.       
  22. if match12:  
  23.     # 使用Match获得分组信息  
  24.     print match12.group()  
  25. else:  
  26.     print u'match12不是小数'  
  27.       
  28. if match21:  
  29.     # 使用Match获得分组信息  
  30.     print match21.group()  
  31. else:  
  32.     print u'match21不是小数'  
  33.   
  34. if match22:  
  35.     # 使用Match获得分组信息  
  36.     print match22.group()  
  37. else:  
  38.     print u'match22不是小数'  

re提供了众多模块方法用于完成正则表达式的功能。

这些方法可以使用Pattern实例的相应方法替代,唯一的好处是少写一行re.compile()代码,

但同时也无法复用编译后的Pattern对象。

这些方法将在Pattern类的实例方法部分一起介绍。

如一开始的hello实例可以简写为:

  1. # -*- coding: utf-8 -*-  
  2. #一个简单的re实例,匹配字符串中的hello字符串  
  3. import re  
  4.   
  5. m = re.match(r'hello', 'hello world!')  
  6. print m.group()  

re模块还提供了一个方法escape(string),用于将string中的正则表达式元字符如*/+/?等之前加上转义符再返回


2.2. Match

Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

属性:

  1. string: 匹配时使用的文本。
  2. re: 匹配时使用的Pattern对象。
  3. pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
  4. endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
  5. lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
  6. lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。

方法:

  1. group([group1, …]):
    获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
  2. groups([default]):
    以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
  3. groupdict([default]):
    返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
  4. start([group]):
    返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
  5. end([group]):
    返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
  6. span([group]):
    返回(start(group), end(group))。
  7. expand(template):
    将匹配到的分组代入template中然后返回。template中可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。\id与\g<id>是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符'0',只能使用\g<1>0。
下面来用一个py实例输出所有的内容加深理解:

[python] view plain copy
  1. # -*- coding: utf-8 -*-  
  2. #一个简单的match实例  
  3.   
  4. import re  
  5. # 匹配如下内容:单词+空格+单词+任意字符  
  6. m = re.match(r'(\w+) (\w+)(?P<sign>.*)''hello world!')  
  7.   
  8. print "m.string:", m.string  
  9. print "m.re:", m.re  
  10. print "m.pos:", m.pos  
  11. print "m.endpos:", m.endpos  
  12. print "m.lastindex:", m.lastindex  
  13. print "m.lastgroup:", m.lastgroup  
  14.   
  15. print "m.group():", m.group()  
  16. print "m.group(1,2):", m.group(12)  
  17. print "m.groups():", m.groups()  
  18. print "m.groupdict():", m.groupdict()  
  19. print "m.start(2):", m.start(2)  
  20. print "m.end(2):", m.end(2)  
  21. print "m.span(2):", m.span(2)  
  22. print r"m.expand(r'\g<2> \g<1>\g<3>'):", m.expand(r'\2 \1\3')  
  23.    
  24. ### output ###  
  25. # m.string: hello world!  
  26. # m.re: <_sre.SRE_Pattern object at 0x016E1A38>  
  27. # m.pos: 0  
  28. # m.endpos: 12  
  29. # m.lastindex: 3  
  30. # m.lastgroup: sign  
  31. # m.group(1,2): ('hello', 'world')  
  32. # m.groups(): ('hello', 'world', '!')  
  33. # m.groupdict(): {'sign': '!'}  
  34. # m.start(2): 6  
  35. # m.end(2): 11  
  36. # m.span(2): (6, 11)  
  37. # m.expand(r'\2 \1\3'): world hello!  


2.3. Pattern

Pattern对象是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。

Pattern不能直接实例化,必须使用re.compile()进行构造,也就是re.compile()返回的对象。

Pattern提供了几个可读属性用于获取表达式的相关信息:

  1. pattern: 编译时用的表达式字符串。
  2. flags: 编译时用的匹配模式。数字形式。
  3. groups: 表达式中分组的数量。
  4. groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内。
可以用下面这个例子查看pattern的属性:

[python] view plain copy
  1. # -*- coding: utf-8 -*-  
  2. #一个简单的pattern实例  
  3.   
  4. import re  
  5. p = re.compile(r'(\w+) (\w+)(?P<sign>.*)', re.DOTALL)  
  6.    
  7. print "p.pattern:", p.pattern  
  8. print "p.flags:", p.flags  
  9. print "p.groups:", p.groups  
  10. print "p.groupindex:", p.groupindex  
  11.    
  12. ### output ###  
  13. # p.pattern: (\w+) (\w+)(?P<sign>.*)  
  14. # p.flags: 16  
  15. # p.groups: 3  
  16. # p.groupindex: {'sign': 3}  

下面重点介绍一下pattern的实例方法及其使用。

1.match

match(string[, pos[, endpos]]) | re.match(pattern, string[, flags]):

这个方法将从string的pos下标处起尝试匹配pattern;

如果pattern结束时仍可匹配,则返回一个Match对象;

如果匹配过程中pattern无法匹配,或者匹配未结束就已到达endpos,则返回None。

pos和endpos的默认值分别为0和len(string);

re.match()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。

注意:这个方法并不是完全匹配。

当pattern结束时若string还有剩余字符,仍然视为成功。

想要完全匹配,可以在表达式末尾加上边界匹配符'$'。

下面来看一个Match的简单案例:

[python] view plain copy
  1. # encoding: UTF-8  
  2. import re  
  3.    
  4. # 将正则表达式编译成Pattern对象  
  5. pattern = re.compile(r'hello')  
  6.    
  7. # 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None  
  8. match = pattern.match('hello world!')  
  9.    
  10. if match:  
  11.     # 使用Match获得分组信息  
  12.     print match.group()  
  13.    
  14. ### 输出 ###  
  15. # hello  



2.search
search(string[, pos[, endpos]]) | re.search(pattern, string[, flags]):
这个方法用于查找字符串中可以匹配成功的子串。

从string的pos下标处起尝试匹配pattern,

如果pattern结束时仍可匹配,则返回一个Match对象;

若无法匹配,则将pos加1后重新尝试匹配;

直到pos=endpos时仍无法匹配则返回None。

pos和endpos的默认值分别为0和len(string));

re.search()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。

那么它和match有什么区别呢?

match()函数只检测re是不是在string的开始位置匹配,

search()会扫描整个string查找匹配


match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话,match()就返回none
例如:
print(re.match(‘super’, ‘superstition’).span())

会返回(0, 5)

print(re.match(‘super’, ‘insuperable’))

则返回None

search()会扫描整个字符串并返回第一个成功的匹配
例如:

print(re.search(‘super’, ‘superstition’).span())

返回(0, 5)
print(re.search(‘super’, ‘insuperable’).span())

返回(2, 7)

看一个search的实例:

[python] view plain copy
  1. # -*- coding: utf-8 -*-  
  2. #一个简单的search实例  
  3.   
  4. import re  
  5.    
  6. # 将正则表达式编译成Pattern对象  
  7. pattern = re.compile(r'world')  
  8.    
  9. # 使用search()查找匹配的子串,不存在能匹配的子串时将返回None  
  10. # 这个例子中使用match()无法成功匹配  
  11. match = pattern.search('hello world!')  
  12.    
  13. if match:  
  14.     # 使用Match获得分组信息  
  15.     print match.group()  
  16.    
  17. ### 输出 ###  
  18. # world  



3.split

split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]):
按照能够匹配的子串将string分割后返回列表。

maxsplit用于指定最大分割次数,不指定将全部分割。

[python] view plain copy
  1. import re  
  2.    
  3. p = re.compile(r'\d+')  
  4. print p.split('one1two2three3four4')  
  5.    
  6. ### output ###  
  7. # ['one', 'two', 'three', 'four', '']  


4.findall

findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]):
搜索string,以列表形式返回全部能匹配的子串。

[python] view plain copy
  1. import re  
  2.    
  3. p = re.compile(r'\d+')  
  4. print p.findall('one1two2three3four4')  
  5.    
  6. ### output ###  
  7. # ['1', '2', '3', '4']  


5.finditer

finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]):
搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。

  1. import re  
  2.    
  3. p = re.compile(r'\d+')  
  4. for m in p.finditer('one1two2three3four4'):  
  5.     print m.group(),  
  6.    
  7. ### output ###  
  8. # 1 2 3 4  

6.sub

sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]):
使用repl替换string中每一个匹配的子串后返回替换后的字符串。
当repl是一个字符串时,可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。
当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
count用于指定最多替换次数,不指定时全部替换。

[python] view plain copy
  1. import re  
  2.    
  3. p = re.compile(r'(\w+) (\w+)')  
  4. s = 'i say, hello world!'  
  5.    
  6. print p.sub(r'\2 \1', s)  
  7.    
  8. def func(m):  
  9.     return m.group(1).title() + ' ' + m.group(2).title()  
  10.    
  11. print p.sub(func, s)  
  12.    
  13. ### output ###  
  14. # say i, world hello!  
  15. # I Say, Hello World!  

7.subn

subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]):
返回 (sub(repl, string[, count]), 替换次数)。

[python] view plain copy
  1. import re  
  2.    
  3. p = re.compile(r'(\w+) (\w+)')  
  4. s = 'i say, hello world!'  
  5.    
  6. print p.subn(r'\2 \1', s)  
  7.    
  8. def func(m):  
  9.     return m.group(1).title() + ' ' + m.group(2).title()  
  10.    
  11. print p.subn(func, s)  
  12.    
  13. ### output ###  
  14. # ('say i, world hello!', 2)  
  15. # ('I Say, Hello World!', 2)  

至此,Python的正则表达式基本介绍就算是完成了^_^
阅读更多

扫码向博主提问

去开通我的Chat快问

luyaran

非学,无以致疑;非问,无以广识
  • 擅长领域:
  • PHP
  • MySQL
  • shell
  • jQuery
  • js
文章标签: Python 爬虫
个人分类: python
上一篇python2.7入门---内置函数
下一篇[Python]网络爬虫(八):糗事百科的网络爬虫(v0.3)源码及解析(简化更新)
想对作者说点什么? 我来说一句

网络爬虫 python

2017年09月13日 27.3MB 下载

python 网络爬虫

2017年12月23日 9.78MB 下载

基于Python网络爬虫技术研究

2018年07月10日 2.08MB 下载

正则表达式

2018年05月14日 12KB 下载

PYTHON正则表达式

2009年02月17日 248KB 下载

没有更多推荐了,返回首页

关闭
关闭