随机模拟与统计计算
文章平均质量分 92
关注蒙特卡罗随机模拟的一些数值算法及其在图像处理中的应用
姑苏隐士
高级多媒体算法工程师,本课数学硕士EE,西北某211土著,爱好数学,编程,信号图像处理,算法研究等
展开
-
数值优化理论的数学基础
优化设计数学模型的求解,实际上就是数学中的极值问题。对于无约束优化问题,是求多元函数的无条件极值,约束优化问题是求多元函数的条件极值。尽管高等数学中的极值理论仍然是求解这种问题的理论基础,但是优于机械,电气信息工程设计中建立的数学模型一般都比较复杂,变量个数和各种约束条件都较多,难以用解析的方法直接求得最优解。因此有必要对多变量的约束优化问题的求解所涉及的数学概念、数值迭代的有关理论进行补充和扩展。偏导数导数作为描述函数变化率的数学量在最优化理论中具有重要的意义。对于医院函数f(x)f(x)f(x)在原创 2021-11-23 11:29:28 · 907 阅读 · 0 评论 -
模拟退火算法
模拟退火算法模拟退火方法的思想来自于统计力学。物理知识告诉我们,热系统可通过退火过程达到内部能量最小的状态。这也就是说,先将系统的温度提高,然后再缓慢地冷却。热系统的这种退火过程可以是采用蒙特卡罗方法模拟,那么很自然地可以想到,类似的模拟方法可以解决一般的优化问题,即用来求目标函数的全局最小值。正如Ising模型模拟那样,模拟退火的核心技术也是Metropolis算法。区域Ω\OmegaΩ被看作为系统的状态空间,目标函数被看作为系统的能量,如果是最大化问题就要转换成最小化问题。模拟退火的Metropo原创 2021-11-15 09:52:51 · 1319 阅读 · 0 评论 -
MCMC抽样---Metropolis算法
MCMC抽样—Metropolis算法马尔科夫链蒙特卡洛抽样方法可追溯到1953年N.Metropolis等人在研究原子和分子的随机性运动问题时所引入的随机模拟方法。该方法被命名为Metropolis模拟算法,这个算法已被列为影响科学和工程技术发展的最伟大的十大算法之首。Metropolis算法是MCMC的核心。MCMC的基本思想是构造一个遍历的马尔科夫链,使得其不变分布成为人们所需要的抽样分布。做到这点似乎相当复杂,但实际上由于人们可以非常灵活地选择简单的转移概率,所以构造该算法并不困难。Metro原创 2021-11-11 11:02:03 · 5830 阅读 · 0 评论 -
基于接受拒绝法的随机抽样
基于接受拒绝法的随机抽样在通常面对的一些实际问题中的概率分布可能不是常见的哪几种概率分布,如何能够生成服从特殊分布的随机数呢?生成服从指定分布的随机数序列的过程我们称之为抽样过程,本文将介绍基于接受拒绝发的随机抽样过程。接受拒绝法的思想可以形象地理解为制作沙雕,经历由粗到细的雕琢过程。该方法首先要像沙雕堆砌出一个简单雏形那样,设置一个形状简单的概率密度曲线,使得抬高它到一定的高度就能够完全罩住所要的抽样的概率密度曲线。前者的概率密度函数称为建议概率密度函数,而后者称为目标概率密度函数,当然两者的定义域要原创 2021-11-09 18:40:57 · 2545 阅读 · 0 评论 -
matlab内置随机数生成器及随机模拟举例
一、matlab内置的密度函数于随机数生成器离散均匀分布离散均匀分布用于描述等概率发生事件的状况,仅限于有限的事件数matlab提供{1,2,…,N}上的均匀分布的概率密度函数黑累计分布函数,其相应的命令为:unidpdf(X, N): 给出X各个点上的概率值;unidcdf(X, N): 给出在X个点的累计概率值;其中矩阵X用于存放各个指定的点。unidrnd(N): 给出均匀分布于{1, 2, …, N}上的一个随机数;unidrnd(N, M1, M2)或者unidrnd(N, [M原创 2021-11-09 10:48:13 · 7288 阅读 · 0 评论 -
随机模拟1---matlab常用要点备忘
MATLAB常用要点备忘一、常用命令操作1.clf:擦除matlab的当前窗口中的图形2.eps:matlab中科表示的最小正数3.inf或Inf:无穷大∞\infty∞4.Nan:Not a number5.lookfor:以主题词搜索相关函数或命令,使用help的前提是知道函数名,如果用户只知道该函数或者命令是做什么的,此时可以使用lookfor二、线性代数[V, D] = eig(A):给出由矩阵A的特征向量组成的矩阵V(以列向量排列)和由对应的特征值组成的对角矩阵D(特征值为对角线原创 2020-06-28 11:20:34 · 274 阅读 · 0 评论