Given an array of integers A
and let n to be its length.
Assume Bk
to be an array obtained by rotating the array A
k positions clock-wise, we define a "rotation function" F
on A
as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
.
Calculate the maximum value of F(0), F(1), ..., F(n-1)
.
Note:
n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6] F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
/*算法思想 由于时间因素必须降低算法复杂度,分析F(0) F(1) ....F(k-1) F(k).... sum=A(0)+A(1)+A(2)+....+A(n) F(k)=F(k-1)+sum-ASize*A(ASize-k), */ int maxRotateFunction(int* A, int ASize) { int* sum; int max; int tempsum; if (ASize == 0|ASize==1) return 0; sum = (int*)malloc(ASize*sizeof(int)); memset(sum, 0, ASize*sizeof(int)); //将数组所有元素全部重置为0 tempsum = 0; for (int j = 0; j<ASize; j++) { sum[0] += (*(A + j))*(j%ASize); } max = sum[0]; for (int i = 0; i < ASize; i++) { tempsum += A[i]; } for (int i = 1; i<ASize; i++) { sum[i] = sum[i - 1] + tempsum - ASize*A[ASize-i]; if (max<sum[i]) max = sum[i]; } return max; }