Leecode.102 二叉树的层序遍历
这里将代码随想录上的10道相同类型题在力扣上都做完了,没有写题解,大同小异。
题目链接:二叉树的层序遍历
思路
两种方法:递归和迭代法,递归法要用到树的高度,迭代法要用到队列。
复杂度
- 时间复杂度:
O(n)
- 空间复杂度:
O(n)
Code
//迭代法
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
if(root == null){
return result;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while(!queue.isEmpty()){
List<Integer> list = new ArrayList<>();
int len = queue.size();
while(len > 0){
TreeNode node = queue.poll();
list.add(node.val);
if(node.left != null){
queue.offer(node.left);
}
if(node.right != null){
queue.offer(node.right);
}
len--;
}
result.add(list);
}
return result;
}
}
//递归法
class Solution {
List<List<Integer>> result = new ArrayList<>();
public List<List<Integer>> levelOrder(TreeNode root) {
recurse(root, 0);
return result;
}
private void recurse(TreeNode root, int deep){
if(root == null){
return;
}
deep++;
if(result.size() < deep){
List<Integer> list = new ArrayList<>();
result.add(list);
}
result.get(deep-1).add(root.val);
recurse(root.left, deep);
recurse(root.right, deep);
}
}
Leecode.226 翻转二叉树
题目链接:翻转二叉树
思路
这道题在遍历顺序的选择上十分多样,遍历顺序分为前、中、后序遍历和层序遍历,此题的中序遍历不能直接用,否则会翻转多次同一个节点造成错误。
前序和后序遍历道理是一样的,分为递归法和迭代法,还有层序遍历法。
复杂度
- 时间复杂度:
O(n)
- 空间复杂度:
O(n)
Code
//前序遍历的递归法
class Solution {
public TreeNode invertTree(TreeNode root) {
if(root == null){
return null;
}
swap(root);
invertTree(root.left);
invertTree(root.right);
return root;
}
private void swap(TreeNode root){
TreeNode temp = root.left;
root.left = root.right;
root.right = temp;
}
}
//前序遍历的迭代法
class Solution {
public TreeNode invertTree(TreeNode root) {
if(root == null){
return null;
}
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
TreeNode node = stack.pop();
swap(node);
if(node.right != null){
stack.push(node.right);
}
if(node.left != null){
stack.push(node.left);
}
}
return root;
}
private void swap(TreeNode root){
TreeNode temp = root.left;
root.left = root.right;
root.right = temp;
}
}
//层序遍历
class Solution {
public TreeNode invertTree(TreeNode root) {
if(root == null){
return null;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while(!queue.isEmpty()){
int len = queue.size();
while(len > 0){
TreeNode node = queue.poll();
swap(node);
if(node.left != null){
queue.offer(node.left);
}
if(node.right != null){
queue.offer(node.right);
}
len--;
}
}
return root;
}
private void swap(TreeNode root){
TreeNode temp = root.left;
root.left = root.right;
root.right = temp;
}
}
Leecode.101 对称二叉树
题目链接:对称二叉树
思路
这道题用三种解法
一、第一种是递归法,判断一棵树是否为对称二叉树,就看树节点的左右节点是否对称,所以递归的参数是左右子节点,这种递归的关键在于如何判断终止条件,有四种终止状态:
1.两节点都为空,返回true;
2.左节点为空,右节点不为空,返回false;
3.右节点为空,左节点不为空,返回false;
4.在判断完上述条件后,只能是两节点都不为空,此时判断节点值是否相等,不相等返回false;
做完这些工作后开始理顺单层递归的逻辑,要用左节点的左子节点和右节点的右子节点比较,用左节点的右子节点和右节点的左子节点比较,最终返回这两个比较的与值。
二、第二、三种是使用队列来比较两个树(根节点的左右子树)是否相互翻转,即迭代法:
首先是用双端队列,从队列的两头同时使用,相当于用了两个栈,将左右子节点分别两头放入队列中,再弹出,判断刚才的那四种终止状态,若没有终止,则将左右节点的四个子节点放入队列,关键在于放入的顺序,因为每次循环是从左右分别 拿出一个节点,所以要将左节点的左子节点和右节点的右子节点同时两端放入,左节点的右子节点和右节点的左子节点同时两端放入。
其次是使用普通队列,区别在于一次取出两个值,因此不同点在于四个子节点的放入顺序,要将左节点的左子节点和右节点的右子节点同时一起放入,左节点的右子节点和右节点的左子节点同时一起放入。
复杂度
- 时间复杂度:
O(n)
- 空间复杂度:
O(n)
Code
//递归法
class Solution {
public boolean isSymmetric(TreeNode root) {
return isSym(root.left, root.right);
}
private boolean isSym(TreeNode nodeA, TreeNode nodeB){
if(nodeA == null && nodeB != null){
return false;
}
if(nodeA != null && nodeB == null){
return false;
}
if(nodeA == null && nodeB == null){
return true;
}
if(nodeA.val != nodeB.val){
return false;
}
return isSym(nodeA.left, nodeB.right) && isSym(nodeA.right, nodeB.left);
}
}
//双端队列的迭代法
class Solution {
public boolean isSymmetric(TreeNode root) {
Deque<TreeNode> deque = new LinkedList<>();
deque.offerFirst(root.left);
deque.offerLast(root.right);
while (!deque.isEmpty()) {
TreeNode leftNode = deque.pollFirst();
TreeNode rightNode = deque.pollLast();
if (leftNode == null && rightNode == null) {
continue;
}
if (leftNode == null || rightNode == null || leftNode.val != rightNode.val) {
return false;
}
deque.offerFirst(leftNode.left);
deque.offerFirst(leftNode.right);
deque.offerLast(rightNode.right);
deque.offerLast(rightNode.left);
}
return true;
}
}
//普通队列的迭代法
class Solution {
public boolean isSymmetric(TreeNode root) {
Queue<TreeNode> deque = new LinkedList<>();
deque.offer(root.left);
deque.offer(root.right);
while (!deque.isEmpty()) {
TreeNode leftNode = deque.poll();
TreeNode rightNode = deque.poll();
if (leftNode == null && rightNode == null) {
continue;
}
if (leftNode == null || rightNode == null || leftNode.val != rightNode.val) {
return false;
}
// 这里顺序与使用Deque不同
deque.offer(leftNode.left);
deque.offer(rightNode.right);
deque.offer(leftNode.right);
deque.offer(rightNode.left);
}
return true;
}
}