P2341 受欢迎的牛 G 题解

题目传送门

前置知识:

一、强联通分量

1,强连通:在一个有向图中,如果两个点可以互相到达,就称为这两个点强连通。

2,强连通图:在一个有向图中,如果任意两个点强连通,就把这个图称为强连通图。

3,强连通分量:在一个非强连通图中的最大强连通子图,称为强连通分量。

二、tarjan算法

tarjan算法是通过一次深度优先遍历来实现的,其中有几个重要的数组

1, dfn[]:表示结点i的时间戳。

2low[]:与结点i连接的所有点中dfn[]值最小的一个。

3,stack:栈里的元素。

因为连通分量里的任意两个点都是强连通的,当存在一个连通分量的时候,点u一定会与它的祖先连通。因为low值代表的是它儿子中dfn[]值最小的,所以它的low值就会更新,从而小于它的dfn[]的值。

当一个点的low[]值等于它的dfn[]的值的时候,说明u点的儿子们没有指向他们祖先的了,所以此时u点与它的子孙们构成了一个连通分量。

Code

#include <iostream>
#include <vector>
#include <stack>
#include <cstring>
using namespace std;
const int N=1e4+5;
vector<int> G[N];
int dfn[N],low[N],sccno[N],cnt[N],out[N];//dfn[i] i的时间戳 low[i] i的追溯值 sccno[i] i节点属于的scc
int dfs_clock=0,scc_cnt=0,n,m,u,v,ans=0;//dfs搜索的次序,scc强连通分量的个数 
stack<int> s;
void tarjan(int u)
{
    dfn[u]=low[u]=++dfs_clock;//初始化追溯值与时间戳 
    s.push(u);//入栈 
    for(int i=0;i<G[u].size();i++)
    {
        int v=G[u][i];//u->v
        if(!dfn[v])//没有访问过 
        {
            tarjan(v);
            low[u]=min(low[u],low[v]);
        }
        else if(!sccno[v])//v被访问过,且在栈中 
            low[u]=min(low[u],dfn[v]);
    }
    if(low[u]==dfn[u])
    {
        scc_cnt++;
        int x;
        do
        {
            x=s.top();
            s.pop();
            sccno[x]=scc_cnt;
            cnt[scc_cnt]++;//cnt记录每个强联通分量里有多少个数
        }while(x!=u);
    }
}
void find_scc(int n)
{
    dfs_clock=scc_cnt=0;
    memset(sccno,0,sizeof(sccno));
    memset(dfn,0,sizeof(dfn));
    for(int i=1;i<=n;i++) if(!dfn[i]) tarjan(i);
}
int main()
{
    cin>>n>>m;
    while(m--)
    {
        cin>>u>>v;
        G[u].push_back(v);
    }
    find_scc(n);
    for(int i=1;i<=n;i++)
    {
        for(int j=0;j<G[i].size();j++)
        {
            v=G[i][j];
            if(sccno[i]!=sccno[v]) out[sccno[i]]++;
        }
    }
    for(int i=1;i<=scc_cnt;i++)
    {
        if(!out[i])
        {
            if(ans)
            {
                ans=0;
                break;
            }
            ans=cnt[i];
        }
    }
    cout<<ans;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值