前置知识:
一、强联通分量
1,强连通:在一个有向图中,如果两个点可以互相到达,就称为这两个点强连通。
2,强连通图:在一个有向图中,如果任意两个点强连通,就把这个图称为强连通图。
3,强连通分量:在一个非强连通图中的最大强连通子图,称为强连通分量。
二、tarjan算法
tarjan算法是通过一次深度优先遍历来实现的,其中有几个重要的数组
1, dfn[]:表示结点i的时间戳。
2low[]:与结点i连接的所有点中dfn[]值最小的一个。
3,stack:栈里的元素。
因为连通分量里的任意两个点都是强连通的,当存在一个连通分量的时候,点u一定会与它的祖先连通。因为low值代表的是它儿子中dfn[]值最小的,所以它的low值就会更新,从而小于它的dfn[]的值。
当一个点的low[]值等于它的dfn[]的值的时候,说明u点的儿子们没有指向他们祖先的了,所以此时u点与它的子孙们构成了一个连通分量。
Code
#include <iostream>
#include <vector>
#include <stack>
#include <cstring>
using namespace std;
const int N=1e4+5;
vector<int> G[N];
int dfn[N],low[N],sccno[N],cnt[N],out[N];//dfn[i] i的时间戳 low[i] i的追溯值 sccno[i] i节点属于的scc
int dfs_clock=0,scc_cnt=0,n,m,u,v,ans=0;//dfs搜索的次序,scc强连通分量的个数
stack<int> s;
void tarjan(int u)
{
dfn[u]=low[u]=++dfs_clock;//初始化追溯值与时间戳
s.push(u);//入栈
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];//u->v
if(!dfn[v])//没有访问过
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(!sccno[v])//v被访问过,且在栈中
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
scc_cnt++;
int x;
do
{
x=s.top();
s.pop();
sccno[x]=scc_cnt;
cnt[scc_cnt]++;//cnt记录每个强联通分量里有多少个数
}while(x!=u);
}
}
void find_scc(int n)
{
dfs_clock=scc_cnt=0;
memset(sccno,0,sizeof(sccno));
memset(dfn,0,sizeof(dfn));
for(int i=1;i<=n;i++) if(!dfn[i]) tarjan(i);
}
int main()
{
cin>>n>>m;
while(m--)
{
cin>>u>>v;
G[u].push_back(v);
}
find_scc(n);
for(int i=1;i<=n;i++)
{
for(int j=0;j<G[i].size();j++)
{
v=G[i][j];
if(sccno[i]!=sccno[v]) out[sccno[i]]++;
}
}
for(int i=1;i<=scc_cnt;i++)
{
if(!out[i])
{
if(ans)
{
ans=0;
break;
}
ans=cnt[i];
}
}
cout<<ans;
return 0;
}