随着人工智能(AI)的快速发展,越来越多的人开始对这一领域产生浓厚的兴趣。但对于初学者来说,AI开发中的诸多名词可能会让人感到困惑。今天,我们就来一起解密AI开发中的常见名词,让你轻松入门!
1.Prompt(提示)
在人工智能(AI)和机器学习的上下文中,"prompt"一词通常指的是给模型提供的输入或查询,以引导模型生成特定的输出或响应。这种输入可以是一个问题、一段文字、一张图片或其他类型的数据,具体取决于模型的类型和应用场景。
Prompt在人与AI的交互过程中起到了桥梁的作用。无论是与大模型交互,还是使用基于大模型开发的应用,都需要通过Prompt去触发AI模型完成任务。可以把AI模型理解为一个人,需要通过它听得懂的语言和方式来跟它交流,从而让它理解我们的需求,产生有用的回答。因此,一个清晰、准确的Prompt能够帮助AI模型更准确地理解用户的意图和需求,从而生成更符合期望的输出。
Prompt在整个AI中扮演着至关重要的角色,我们完全可以将它称为大模型的编程语言。一个清晰、准确的prompt可以帮助模型更准确地理解用户的意图和需求,从而生成更符合期望的输出。相反,一个模糊或歧义的prompt可能导致模型产生不准确的输出或完全误解用户的意图。可以这么说在大模型实际上都是围绕着prompt进而表现出各种超乎预期的功能,学习和使用prompt是贯穿整个ai始终。
prompt有多重要,参考下openai为prompt工程师拟写的指导就可以知道,链接如下:
Prompt engineering - OpenAI API
2.Models(模型)
当我们谈论AI或机器学习时,经常会听到“模型”这个词。但模型到底是什么呢?其实,说得简单一点,模型就是那个包含了很多参数的文件。
你可以把模型想象成一个“食谱”。食谱上列出了做一道菜所需要的所有原料和步骤,而模型里的参数就像是这些原料和步骤的具体数值和顺序。只不过,模型是用来“做”出预测或决策的,而不是菜。
这些参数是怎么来的呢?它们是通过训练得来的。训练模型,就像是根据很多已知的例子(比如,已知的图片和对应的标签)来调整这些参数,使得模型能够尽可能地准确地进行预测或决策。
训练完成后,我们就可以保存这个模型,也就是保存这些参数到一个文件中。之后,当我们需要用这个模型来做预测或决策时,只需要加载这个文件,输入新的数据,模型就会根据之前学到的“知识”来给出结果。
几乎每一个你使用的大语言模型相关工具,例如ChatGPT,都是基于一个模型进行推理和输出,根据你给出的Prompt,推理出一个一个的输出。
- Embedding(嵌入)
嵌入是一种将离散型数据(如文本、图像等)转换为连续向量表示的技术。简单来说,就是把复杂的数据转换成计算机更容易理解的形式。在自然语言处理中,词嵌入(Word Embedding)是常用的一种技术,它可以将每个单词表示为一个向量,使得语义上相似的单词在向量空间中相互靠近。这样,计算机就能更好地理解文本的含义和上下文关系。
大语言模型概念中常提到的RAG(检索增强生成,Retrieval-Augmented Generation)就和Embedding有着相辅相成的关系。RAG是一种利用检索技术来增强生成模型性能的方法。在RAG框架中,检索组件负责从大量文档中检索与当前生成任务最相关的信息,然后将这些信息提供给生成模型以指导其生成更准确、更相关的内容。这种方法结合了检索和生成的优点,能够处理复杂、开放域的生成任务。
Embedding在RAG中发挥着关键作用,Embedding为RAG提供了必要的语义向量表示和检索能力。首先,Embedding用于将文档和查询转换为向量表示,这使得检索组件可以计算它们之间的相似性并进行有效的检索。其次,高质量的Embedding可以提高检索的准确性和效率,从而确保生成模型获得最相关的信息。最后,Embedding还可以直接用于初始化生成模型的参数,为生成过程提供有用的语义信息。
4. Fine-Tuning(微调)
微调是在预训练模型的基础上进行调整以适应特定任务的过程。想象一下,你有一个已经训练有素的模型,但你需要让它适应一个新的场景或任务。这时,你就可以通过微调来优化模型的性能。微调不仅可以节省大量训练时间和资源,还能让模型更好地适应特定任务的需求。
- Tokens(标记或词元)
在人工智能和自然语言处理(NLP)领域,“tokens” 是一个非常基础且重要的概念。Tokens 是指将文本拆分成一个个有意义的小单元,这些小单元可以是单词、标点符号、数字等。这个过程通常被称为“分词”(tokenization)。
分词是NLP预处理步骤中的一个重要环节,它有助于模型更好地理解和处理文本数据。通过将文本拆分成tokens,模型可以更容易地识别出句子中的不同元素,如主语、谓语、宾语等,这对于执行诸如文本分类、情感分析、机器翻译等任务至关重要。
在深度学习模型中,特别是像BERT、GPT等基于Transformer的模型中,输入文本首先会被转换成一个token序列。每个token都会被映射到一个唯一的ID,这个ID会被用作模型的输入。模型内部会学习并理解这些token之间的关系和模式,以便在给定上下文的情况下生成或分类文本。
为什么会提到tokens ,因为tokens与计费息息相关,几乎所有的大语言模型服务都是围绕着tokens计费,而且prompt中还有个特别重要的概念就是tokens压缩,因为实际上所有的模型对于输入输出的tokens都是有限制的。
人工智能大模型越来越火了,离全民大模型的时代不远了,大模型应用场景非常多,不管是做主业还是副业或者别的都行,技多不压身,我这里有一份全套的大模型学习资料,希望给那些想学习大模型的小伙伴们一点帮助!
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓