题目描述
给你n根火柴棍,你可以拼出多少个形如“A+B=C”的等式?等式中的A、B、C是用火柴棍拼出的整数(若该数非零,则最高位不能是0)。用火柴棍拼数字0-9的拼法如图所示:
注意:
1.加号与等号各自需要两根火柴棍
2.如果A≠B,则A+B=C与B+A=C视为不同的等式(A,B,C>=0)
3.n根火柴棍必须全部用上
输入格式
一个整数n(n<=24)。
输出格式
一个整数,能拼成的不同等式的数目。
输入输出样例
输入 #1
14
输出 #1
2
输入 #2
18
输出 #2
9
说明/提示
【输入输出样例1解释】
2个等式为0+1=1和1+0=1。
【输入输出样例2解释】
9个等式为:
0+4=4
0+11=11
1+10=11
2+2=4
2+7=9
4+0=4
7+2=9
10+1=11
11+0=11
思路过程
看到这道题的范围n<=24,非常小,直接暴力打表就行了。
按照图片先把每个数字需要的火柴棒数目数出来,一位数就都出来了。在写之前先估计一下,加号、等号一共需要4根,三个数最少也得是1+1=2,一共4+9=13根,所以13根以下直接出0结束就行了;当n=24时,三个数要20根,平均一个数差不多7根,三位数绝对能cover住
#include <bits/stdc++.h>
#include <cstring>
#include <cmath>
using namespace std;
int main()
{
int n,ans=0,i,j,s;
int a[1001]={6,2,5,5,4,5,6,3,7,6};
scanf("%d",&n);
if(n<13)
{
printf("%d",ans);
return 0;
}
for(i=10;i<=1000;i++)
{
if(i/100<1)//两位数
{
a[i]=a[i%10]+a[i/10];
}
else//三位数
{
a[i]=a[i%10]+a[((i%100)-(i%10))/10]+a[i/100];
}
}
for(i=0;i<=1000;i++)
{
for(j=0;i+j<=1000;j++)
{
if(a[i]+a[j]+a[i+j]==n-4)
{
ans++;
// printf("%d+%d=%d\n",i,j,i+j);
}
}
}
printf("%d",ans);
return 0;
}