信息学奥赛一本通(1065:奇数求和)

本文介绍了一个简单的C语言程序,该程序用于计算指定范围内所有奇数的和。具体而言,从非负整数m到n(包括m和n)的所有奇数将被累加并输出最终结果。

1065:奇数求和


时间限制: 1000 ms         内存限制: 65536 KB
提交数: 52677     通过数: 34146

【题目描述】

计算非负整数mm到nn(包括mm和nn)之间的所有奇数的和,其中,mm 不大于 nn,且nn 不大于300300。例如 m=3,n=12m=3,n=12, 其和则为:3+5+7+9+11=353+5+7+9+11=35。

【输入】

两个数 mm 和 nn,两个数以一个空格分开,其中 0≤m≤n≤3000≤m≤n≤300 。

【输出】

输出一行,包含一个整数,表示mm 到 nn(包括mm 和 nn )之间的所有奇数的和

【输入样例】

7 15

【输出样例】

55

【参考代码】

#include <stdio.h>
int main()
{
    int m,n,i,s=0;
    scanf("%d%d",&m,&n);
    for(i=m;i<=n;i++)
    {
    	if(i%2)
    		s+=i;
	}
	printf("%d\n",s);
	return 0;
}

http://ybt.ssoier.cn:8088/problem_show.php?pid=1065

<think>根据提供的引用信息,用户要求查找信息学奥赛一本1065题的答案 引用[2]中明确给出了1065题的答案: 题目要求:计算从m到n(包括m和n)之间所有奇数的和 输入样例:7 15 输出样例:55 代码实现如下: ```c++ #include<iostream> using namespace std; int main() { int m, n, sum = 0; cin >> m >> n; for (int i = m; i <= n; i++) { if (i % 2 != 0) { sum += i; } } cout << sum; return 0; } ``` 此代码过循环遍历m到n的每个整数,判断是否为奇数(i%2 != 0),然后将奇数累加到sum中,最后输出总和。代码符合题目要求,可正确提交。 §§相关问题§§ 1. 如何优化大范围奇数和的计算效率? 2. 如果不使用循环,能否用数学公式直接求解? 3. 1065题在信息学奥赛中的考察重点是什么? </think>根据引用[2],信息学奥赛一本1065题(奇数求和)的完整答案如下: **题目要求**:输入两个整数 m 和 n,计算并输出 m 到 n(包含 m 和 n)之间所有奇数的和。 **输入样例**: ``` 7 15 ``` **输出样例**: ``` 55 ``` **标准解答代码**: ```c++ #include <iostream> using namespace std; int main() { int m, n, sum = 0; // 初始化求和变量 cin >> m >> n; // 输入两个整数 // 遍历m到n的所有整数 for (int i = m; i <= n; i++) { // 判断是否为奇数:不能被2整除 if (i % 2 != 0) { sum += i; // 累加奇数 } } cout << sum; // 输出结果 return 0; } ``` ### 代码解析 1. **变量初始化**: - `m` 和 `n` 存储输入的范围 - `sum` 初始化为0,用于累计奇数和 2. **核心逻辑**: - 过 `for` 循环遍历 `m` 到 `n` 的每个整数 - 用 `i % 2 != 0` 判断奇数(余数不为0) - 符合条件的奇数累加到 `sum` 3. **时间复杂度**: - 循环执行 `n - m + 1` 次 - 时间复杂度 $O(n)$,适合常规数据范围 > ▶ 验证提示:输入 `7 15` 时,奇数序列为 7+9+11+13+15=55,符合输出要求[^2]。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值