C(n,k)组合数计算---c++实现

题目

计算从n个人中选k个人的不同组合数

分析

C(n,k) = C(n-,k) + C(n-1,k-1)
n=k或者k=0时组合数为1

Code
#include <iostream>
using namespace std;
int comm(int n,int k){
	if(k > n)
		return 0;
	else if(n == k||k==0)
		return 1;
	else
		return comm(n-1,k) + comm(n-1,k-1);
}
int main(){
	int n,k;
	cout<<"Input the n and k:";
	cin>>n>>k;
	cout<<"C(n,k) = "<<comm(n,k)<<endl;
	return 0;
}
### 使用C++实现大数的组合数计算 对于大数的组合数计算,在常规的数据类型下可能会遇到溢出问题。为了处理这种情况,可以采用字符串来存储大整数并编写相应的算法来进行乘法和除法操作。 #### 方法概述 一种有效的方式是利用预处理阶乘及其逆元的方式来快速求解组合数[^2]。然而当数值非常巨大时,则需借助于高精度算术运算,即通过自定义的大数类或者第三方库(如GMP)完成加减乘除等基本运算。 #### 高精度组合数计算示例代码 下面给出一段基于字符串模拟高精度乘法与除法逻辑的简单版本: ```cpp #include <iostream> #include <vector> using namespace std; // 大数相乘函数 void multiply(vector<int>& num, int multiplier) { int carry = 0; for (size_t i = 0; i < num.size() || carry; ++i) { if (i == num.size()) num.push_back(0); long product = num[i] * static_cast<long>(multiplier) + carry; num[i] = product % 10; carry = product / 10; } } // 大数相除函数 bool divide(vector<int>& dividend, int divisor, vector<int>& quotient) { long temp = 0; bool nonZeroFound = false; for (auto rit = dividend.rbegin(); rit != dividend.rend(); ++rit) { temp = temp * 10 + *rit; if (temp >= divisor) { nonZeroFound |= true; quotient.insert(quotient.begin(), temp / divisor); temp %= divisor; } else if(nonZeroFound){ quotient.insert(quotient.begin(), 0); } } while (!quotient.empty() && !nonZeroFound) quotient.pop_back(); return nonZeroFound; } long long C(int n, int k) { if(k > n-k) k=n-k; vector<int> result{1}; for(int i=0;i<k;++i){ multiply(result,n-i); vector<int> tmp{}; divide(result,i+1,tmp); swap(tmp,result); } long long res = 0; for(auto it=result.rbegin();it!=result.rend();++it){ res=res*10+(*it); } return res; } ``` 此段程序实现了两个辅助性的静态成员函数`multiply()`用于执行大数乘法;另一个则是`divide()`负责处理大数之间的整除关系,并最终返回商的结果作为新的大数值。最后主函数`C(n,k)`调用了这两个工具函数完成了组合数的高效计算过程[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值