[leetcode] 69. x 的平方根

题目描述

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5

示例 1:

输入:x = 4
输出:2

示例 2:

输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。

提示:

  • 0 <= x <= 231 - 1

解题方法

方法一:二分查找

题目说了x在[0, 231-1]之间,那么我们取左边界l为0,右边界rx,取中间值mid计算乘积是否小于等于x。若小于等于则l = mid + 1,否则r = mid -1;一直取mid计算乘积不断遍历,直到左边界超过右边界,此时右边界r即为最接近x的平方根。

java代码

public int mySqrt(int x) {
    int l = 0, r = x;
    while (l <= r) {
        int mid = l + (r - l)/ 2;
        // mid相乘可能超过int整形范围,故值取long类型做比较
        long result = (long)mid * (long)mid;
        if (result > (long) x) {
            r = mid - 1;
        } else {
            l = mid + 1;
        }
    }
    return r;
}

复杂度分析

时间复杂度: O ( l o g x ) O(logx) O(logx)
空间复杂度: O ( 1 ) O(1) O(1)

方法二:牛顿迭代法

我们设 f ( x ) = x 2 − C f(x) = x^2 - C f(x)=x2C C C C为题目中输入,求函数的零点即为 C C C的平方根。因为 x x x是非负整数,所以 x x x的平方根一定小于等于 x x x,在单根附近具有平方收敛的特性,可以使用牛顿迭代法求解。
在这里插入图片描述
牛顿迭代法的公式如下:

x n + 1 = x n − f ( x n ) f ′ ( x n ) x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} xn+1=xnf(xn)f(xn)

我们将 f ( x ) = x 2 − C f(x) = x^2 - C f(x)=x2C带入上述方程,即可求出

x n + 1 = 1 2 ∗ ( x n + C x n ) x_{n+1} = \frac{1}{2} * (x_n + \frac{C}{x_n}) xn+1=21(xn+xnC)

借用下力扣题解图,我们取 x 0 = C x_0 = C x0=C,带入公式即可求出 x 0 x_0 x0点的切线与 x x x轴的交点 x 1 x_1 x1,带入 x 1 x_1 x1求出 x 2 x_2 x2,依次类推,直到 x n + 1 x_{n+1} xn+1 x n x_{n} xn非常接近时,我们即取 x n + 1 x_{n+1} xn+1作为最终解。

java代码

public int mySqrt(int x) {
    if (x == 0) {
        return 0;
    }

    double C = x, x0 = x;
    while (true) {
        double xi = 0.5 * (x0 + C / x0);
        if (Math.abs(x0 - xi) < 1e-7) {
            break;
        }
        x0 = xi;
    }
    return (int) x0;
}

复杂度分析

时间复杂度: O ( l o g x ) O(logx) O(logx)
空间复杂度: O ( 1 ) O(1) O(1)


  • 个人公众号
    个人公众号
  • 个人小游戏
    个人小游戏
    在这里插入图片描述
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会飞的大鱼人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值