[转]Hadoop 历史服务器与日志详解

 

本文部分资料转自 Hadoop日志存放路径详解
本文部分资料转自 Hadoop历史服务器详解
本文部分资料转自 董的博客:Hadoop 2.0中作业日志收集原理以及配置方法

 

 

 

 

 


 

一. Hadoop 日志存放路径详解

 

Hadoop 的日志有很多种,很多初学者往往遇到错而不知道怎么办,其实这时候就应该去看看日志里面的输出,这样往往可以定位到错误。Hadoop的日志大致可以分为两大类,且这两类的日志存放的路径是不一样的。本文基于Hadoop 2.x 版本进行说明的。

 

1. Hadoop 系统服务输出的日志
2. Mapreduce 程序输出来的日志

 

  • 作业运行日志
  • 任务运行日志 (Container 日志)

 

Hadoop 2.0 提供了跟 1.0 类似的作业日志收集组件,从一定程度上可认为直接重用了 1.0 的代码模块,考虑到YARN 已经变为通用资源管理平台,因此,提供一个通用的日志收集模块势在必行,由于目前通用日志收集模块正在开发中(可参考 “YARN-321” ),本文仅介绍MRv2(MapReduce On YARN)自带的日志收集模块,包括工作原理以及配置方法。

 

在 Hadoop 2.0 中,Mapreduce 程序的日志包含两部分,作业运行日志任务运行日志(Container 日志)

 


 

1.1 Hadoop系统服务输出的日志

 

诸如 NameNode、DataNode、ResourceManage 等系统自带的服务输出来的日志默认是存放在 ${HADOOP_HOME}/logs 目录下。比如 resourcemanager 的输出日志为 yarn-${USER}-resourcemanager-${hostname}.log

 

  • yarn 指的就是该日志的属性即为 YARN,其他类似的有 mapred、hadoop 等
  • ${USER}s 是指启动 resourcemanager 进程的用户
  • resourcemanager 就是指明 resourcemanager 进程,其他类似的有 namenode、zkfc、historyserver 等
  • ${hostname} 是 resourcemanager 进程所在机器的 hostname

 

当日志到达一定的大小(可以在 ${HADOOP_HOME}/etc/hadoop/log4j.properties 文件中配置)将会被切割出一个新的文件,切割出来的日志文件名类似 yarn-${USER}-resourcemanager-${hostname}.log.数字 的形式,后面的数字越大,代表日志越旧。在默认情况下,只保存前 20 个日志文件,比如下面:

 

这里写图片描述

 


 

1.2 配置 Hadoop 系统服务日志

 

1. 配置 log4j 日志的属性参数

 

比如 resourcemanager(在 ${HADOOP_HOME}/etc/hadoop/log4j.properties):

 

log4j.logger.org.apache.hadoop.yarn.server.resourcemanager.RMAppManager
          $ApplicationSummary=${yarn.server.resourcemanager.appsummary.logger}
log4j.additivity.org.apache.hadoop.yarn.server.resourcemanager
                                    .RMAppManager$ApplicationSummary=false
log4j.appender.RMSUMMARY=org.apache.log4j.RollingFileAppender
log4j.appender.RMSUMMARY.File=${hadoop.log.dir}/
                        ${yarn.server.resourcemanager.appsummary.log.file}
log4j.appender.RMSUMMARY.MaxFileSize=256MB(多大切割日志)
log4j.appender.RMSUMMARY.MaxBackupIndex=20(说明保存最近20个日志文件)
log4j.appender.RMSUMMARY.layout=org.apache.log4j.PatternLayout
log4j.appender.RMSUMMARY.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n

 

 


2. 配置 resourcemanager 日志存放路径

 

${HADOOP_HOME}/etc/hadoop/yarn-env.sh 文件中

 

这里写图片描述

 

只需要修改 YARN_LOG_DIR 的值,这时候,yarn 相关的日志记录都将存放在你配置的目录下。

 

 

 


 

二. 历史服务器 (JobHistory Server)

 

MapReduce 的 JobHistory Server,这是一个独立的服务,可通过 web UI 展示历史作业日志,之所以将其独立出来,是为了减轻 ResourceManager 负担。JobHistory Server 将会分析作业运行日志,并展示作业的启动时间、结束时间、各个任务的运行时间,各种Counter数据等,并产生一个指向作业和任务日志的链接,其默认端口号为 19888。通常可以启动在一台独立的机器上

 


 

2.1 历史服务器配置

 

你需在 mapred-site.xml 中对其进行配置

 

<property>
<name>mapreduce.jobhistory.address</name>
<value>0.0.0.0:10020</value>
</property>

<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>0.0.0.0:19888</value>
</property>

 

 

上面的参数是在 mapred-site.xml 文件中进行配置,mapreduce.jobhistory.address 和 mapreduce.jobhistory.webapp.address 默认的值分别是 0.0.0.0:10020 和 0.0.0.0:19888,大家可以一定要根据自己的情况进行相应的配置,最好别用默认的 0.0.0.0 ,参数的格式是 host:port。

 

在 Hadoop 历史服务器的 WEB UI 上最多显示 20000 个历史的作业记录信息;其实我们可以在 mapred-site.xml 文件中通过下面的参数进行配置,然后重启一下 Hadoop jobhistory 即可。

 

<property>
    <name>mapreduce.jobhistory.joblist.cache.size</name>
    <value>20000</value>
</property>

 

 


 

2.2 关于 HA 模式下的历史服务器配置的结论

 

笔者的集群是 HA 模式的( HDFS 和 ResourceManager HA)。在 ” Hadoop-2.5.0-cdh5.3.2 HA 安装" 中详细讲解了关于 HA 模式的搭建,这里就不再赘述。但网上直接将关于 HA 模式下的历史服务器的配置资料却很少。

 

笔者在思考,如果配置在 mapred-site.xml 中就设置一台历史服务器,那么当这台机器挂了,那么能不能有另一台机器来承担历史服务器的责任,也就是笔者理想当然的 jobhistory server HA 模式。后面经过各自尝试,得出来的结论是笔者我太年轻了,概念没有搞懂,先总结如下:

 

  • 历史服务器是个独立的服务,其不会受到 namenode 和 resourcemanager 的 active/standby 切换所带来的影响
  • 当历史服务器突然失效了,那些日志文件依旧存在 HDFS 上。当历史服务器又恢复正常,还是能看到在历史服务器失效期间的运行日志
  • 可以很简单地把历史服务器当成是存在 HDFS 上日志文件的 Web 浏览器。当且仅当历史服务器启动后,才可以通过 Web 查看,比如 http://10.6.3.43:19888/jobhistory
  • 实际上,每台机器的 MapReduce 历史服务器的配置可以不同,当在哪台机器上执行程序时,那么所指向的历史服务器地址其实就是 mapred-site.xml 文件中 mapreduce.jobhistory.webapp.address 配置参数所指定的那台机器

 

所以 Hadoop HA 模式下的历史服务器配置和非 HA 模式是一样样的,如果你自作聪明(比如笔者),在 mapred-site.xml 文件中,添加了两个运行 namenode(resourcemanager) 进程的主备节点的主机名(或IP地址)。

 

但是真正在两台主机上同时启动历史服务器进程时,会报如下的类似错误:

 

INFO org.apache.hadoop.http.HttpServer2: HttpServer.start() threw a non Bind IOException
77504 java.net.BindException: Port in use: master52:19888
Caused by: java.net.BindException: Cannot assign requested address
INFO org.apache.hadoop.service.AbstractService: Service HistoryClientService failed in state STARTED; cause: org.apache.hadoop.yarn.webapp.WebAppException: Error starting http server
INFO org.apache.hadoop.util.ExitUtil: Exiting with status -1

 

原因就是端口被占用了,很明显如果不改变端口,有且仅有一个 历史服务器成功启动,且启动的那个服务器是在 mapred-site.xml 文件中设置位置最下面的那个,及后面的配置参数将覆盖前一个配置参数。就算改变端口也没卵用…

 

Note:以上这些是笔者一边操作,一边对比总结,有些结论未必是正确的,还请各位指正…

 


 

2.3 启动历史服务器

 

配置完上述的参数之后,重新启动 Hadoop jobhistory,这样我们就可以在 mapreduce.jobhistory.webapp.address 参数配置的主机上对 Hadoop 历史作业情况经行查看。

 

只能在 mapred-site.xml 文件中 mapreduce.jobhistory.webapp.address 配置参数所指定的那台机器上执行:

 

sbin/mr-jobhistory-daemon.sh start jobhistoryserver

 

 

这样我们就可以在相应机器的 19888 端口上打开历史服务器的 WEB UI 界面。可以查看已经运行完的作业情况。且在 HDFS 上可以看到如下目录:

 

这里写图片描述

 

 

 


 

三. 作业运行日志

 

3.1 作业运行日志概念

 

作业运行由 MRAppMaster(MapReduce 作业的 ApplicationMaster)产生,详细记录了作业启动时间、运行时间,每个任务启动时间、运行时间、Counter 值等信息,与 Hadoop 1.0 中的 JobHistory 日志是基本一致。MapReduce 作业的 ApplicationMaster 也运行在 Container 中,且是编号为 000001 的 Container,比如 container_1385051297072_0001_01_000001,它自身可认为是一个特殊的 task,因此,也有自己的运行日志,该日志与 Map Task 和 Reduce Task 类似,但并不是前面介绍的”作业运行日志”。

 

ApplicationMaster 产生的作业运行日志举例如下,日志采用 apache avro(作为日志存储格式是 Hadoop 2.0 唯一使用到 Avro 的地方)工具,以 json 的格式保存:

 

    {"type":"JOB_SUBMITTED","event":{"org.apache.hadoop.mapreduce.jobhistory.JobSubmitted":

    {"jobid":"job_1385051297072_0002″,"jobName":"QuasiMonteCarlo","userName":"yarn", "submitTime":1385393834983,"jobConfPath":

    "hdfs://hadoop-test/tmp/hadoop-yarn/staging/yarn/.staging/job_1385051297072_0002/job.xml","acls":

    {},"jobQueueName":"default","workflowId":"","workflowName":"","workflowNodeName":"",

    "workflowAdjacencies":"","workflowTags":""}}}

    {"type":"JOB_INITED","event":{"org.apache.hadoop.mapreduce.jobhistory.JobInited":

    {"jobid":"job_1385051297072_0002″,"launchTime":1385393974505,"totalMaps":8,

    "totalReduces":1,"jobStatus":"INITED","uberized":false}}}

    {"type":"JOB_INFO_CHANGED","event":{"org.apache.hadoop.mapreduce.jobhistory.JobInfoChange":

    {"jobid":"job_1385051297072_0002″,"submitTime":1385393834983,"launchTime":1385393974505}}}

 

 


 

3.2 作业运行日志配置

 

历史作业的记录里面包含了一个作业用了多少个 Map、用了多少个 Reduce、作业提交时间、作业启动时间、作业完成时间等信息;这些信息对分析作业是很有帮助的,我们可以通过这些历史作业记录得到每天有多少个作业运行成功、有多少个作业运行失败、每个队列作业运行了多少个作业等很有用的信息。这些历史作业的信息是通过下面的信息配置的:

 

在 mapred-site.xml 文件中进行配置:

 

<property>
    <name>mapreduce.jobhistory.done-dir</name>
    <value>${yarn.app.mapreduce.am.staging-dir}/history/done</value>
</property>

<property>
    <name>mapreduce.jobhistory.intermediate-done-dir</name>
    <value>${yarn.app.mapreduce.am.staging-dir}/history/done_intermediate</value>
</property>

<property>
    <name>yarn.app.mapreduce.am.staging-dir</name>
    <value>/tmp/hadoop-yarn/staging</value>
</property>

 

 


 

3.3 作业运行日志产生过程

 

1. 启动作业的 ApplicationMaster 并写日志至 HDFS

 

  • ResourceManager 启动作业的 ApplicationMaster
  • ApplicationMaster 运行过程中,将日志写到 ${yarn.app.mapreduce.am.staging-dir}/yarn/.staging/job_XXXXX_XXX/
  • 参数 yarn.app.mapreduce.am.staging-dir 的默认值是 /tmp/hadoop-yarn/staging
  • 该目录下将存在3个文件,分别是以 “.jhist“、”.summary” 和 “.xml” 结尾的文件,分别表示作业运行日志、作业概要信息和作业配置属性,其中,作业概要信息只有一句话,举例如下:

 

jobId=job_1385051297072_0002,submitTime=1385393834983,launchTime=1385393974505,

firstMapTaskLaunchTime=1385393976706,firstReduceTaskLaunchTime=1385393982581,

finishTime=1385393985417,resourcesPerMap=1024,resourcesPerReduce=1024,

numMaps=8,numReduces=1,user=yarn,queue=default,status=SUCCEEDED,

mapSlotSeconds=47,reduceSlotSeconds=5,jobName=QuasiMonteCarlo

 

 


2. HDFS 内转移历史运行日志

 

  • 所有任务运行完成后,意味着,该作业运行完成
  • 此时 ApplicationMaster 将三个文件拷贝到 ${ mapreduce.jobhistory.intermediate-done-dir}/${username} 目录下,拷贝后的文件名后面添加 "_tmp"
  • 其中 mapreduce.jobhistory.intermediate-done-dir 默认值是 ${yarn.app.mapreduce.am.staging-dir}/history/done_intermediate
  • ApplicationMaster 将拷贝完成的三个文件重新命名成 “.jhist”、”.summary” 和 “.xml” 结尾的文件(去掉 "_tmp"

 


3. 周期转移 done_intermediate 中的日志文件到 done 目录

 

  • 周期性扫描线程定期将 done_intermediate 的日志文件转移到 done 目录
  • 通过参数 mapreduce.jobhistory.done-dir 配置,默认值为 ${yarn.app.mapreduce.am.staging-dir}/history/done)
  • 同时删除 “.summary” 文件(该文件中的信息,.jhist 文件中都有)
  • ApplicationMaster 移除 ${yarn.app.mapreduce.am.staging-dir}/yarn/.staging/job_XXXXX_XXX/ 目录

 

 

 


 

四. 任务运行日志 (Container 日志)

 

4.1 Container 日志基本概念

 

默认情况下,任务运行日志 (Container 日志) 产只会存放在各 NodeManager 的本地磁盘上,且 NodeManager 将日志保存到 yarn.nodemanager.log-dirs 下 ,该属性缺省值为 ${yarn.log.dir}/userlogs,也就是 Hadoop 安装目录下的 logs/userlogs 目录中,通常为了分摊磁盘负载,我们会为该参数设置多个路径。

 

需要注意的是,ApplicationMaster 的自身的日志也存放在该路目下,因为它也运行在 Container 之中,是一个特殊的 task。举例如下,其中,第一个是某个作业的 ApplicationMaster 日志(编号是000001)。且里面包含 stderr 、stdout 、 syslog 三个文件。

 

这里写图片描述

 

因为默认情况下,任务运行日志产只会存放在各 NodeManager 的本地磁盘上,而一个集群又有多个 NodeManager,将作业和任务日志存放在各个节点上肯定不便于统一管理和分析,为此,我们可以启用日志聚集功能。打开该功能后,各个任务运行完成后,会将生成的日志推送到 HDFS 的一个目录下,以便集中管理和分析(之前的并不会立即删除,在 HDFS 上,每个任务产生的三个文件,即 syslog、stderr 和 stdout 将合并一个文件,并通过索引记录各自位置)。

 

熟悉 Hadoop 相关日志的存放地方不仅对运维 Hadoop 和观察 Mapreduce 的运行都是很有帮助的。

 


 

4.2 不开启日志聚合时的日志配置

 

Container 日志包含 ApplicationMaster 日志和普通 Task 日志等信息。默认情况下,这些日志信息是存放在 ${HADOOP_HOME}/logs/userlogs 目录下(在那些 NodeManager 的机子上),我们可以通过下面的配置进行修改:

 

<property>
    <description>
      Where to store container logs. An application's localized log directory 
      will be found in ${yarn.nodemanager.log-dirs}/application_${appid}.
      Individual containers' log directories will be below this, in 
      directories  named container_{$contid}. Each container directory will 
      contain the files stderr, stdin, and syslog generated by that container.
    </description>
    <name>yarn.nodemanager.log-dirs</name>
    <value>${yarn.log.dir}/userlogs</value>
</property>

 

 

  • 参数解释:存放 Container 日志的地方

 


 

4.3 开启日志聚合时的配置参数

 

日志聚集是 YARN 提供的日志中央化管理功能,它能将运行完成的 Container/ 任务日志上传到 HDFS 上,从而减轻 NodeManager 负载,且提供一个中央化存储和分析机制。默认情况下,Container/ 任务日志存在在各个 NodeManager 上,如果启用日志聚集功能需要额外的配置。

 

yarn-site.xml 中设置

 

1. yarn.log-aggregation-enable

 

  • 参数解释:是否启用日志聚集功能。
  • 默认值:false

 

2. yarn.log-aggregation.retain-seconds

 

  • 参数解释:在 HDFS 上聚集的日志最多保存多长时间。
  • 默认值:-1

 

3. yarn.log-aggregation.retain-check-interval-seconds

 

  • 参数解释:多长时间检查一次日志,并将满足条件的删除,如果是 0 或者负数,则为上一个值的 1/10。
  • 默认值:-1

 

4. yarn.nodemanager.remote-app-log-dir

 

  • 参数解释:当应用程序运行结束后,日志被转移到的HDFS目录(启用日志聚集功能时有效)
  • 默认值:/tmp/logs

 

5. yarn.nodemanager.remote-app-log-dir-suffix

 

  • 参数解释:远程日志目录子目录名称(启用日志聚集功能时有效)
  • 默认值:日志将被转移到目录 ${yarn.nodemanager.remote-app-log-dir}/${user}/${thisParam}

 

 

 


 

五. 扩展知识

 

5.1 mapred-site.xml 和 yarn-site.xml 这两个配置文件的作用

 

1.yarn-site.xml
yarn-site.xml 是 YARN 相关的配置文件,客户端、ResourceManager 和 NodeManager 需要改配置文件,为了简单,可让这三类节点上的该文件是一致的。

 

2. Mapred-site.xml
Mapred-site.xml 是 MapReduce 特有的配置文件,在 YARN 中,mapreduce 已经变成了一个客户端编程库,因此只有客户端和 jobhistory server 需要该配置文件,其他节点,比如 resourceManager 和 NodeManager 不需要,除非你们也把这些节点作为客户端提供给用户使用,另外,一定要让客户端和 jobhistory server 上的 mapres-site.xml 一致。

 


 

5.2 权限相关配置参数

 

注意,配置这些参数前,应充分理解这几个参数的含义,以防止误配给集群带来的隐患。另外,这些参数均需要在 yarn-site.xml 中配置。

 

这里的权限由三部分组成,分别是:

 

1. 管理员和普通用户如何区分
管理员列表由参数 yarn.admin.acl 指定。

 

2. 服务级别的权限
比如哪些用户可以向集群提交 ResourceManager 提交应用程序,服务级别的权限是通过配置 hadoop-policy.xml 实现的,这个与 Hadoop 1.0 类似。

 

3. 队列级别的权限
比如哪些用户可以向队列A提交作业等。队列级别的权限是由对应的资源调度器内部配置的,比如 Fair Scheduler 或者 Capacity Scheduler 等。


---------------------
作者:该昵称已经被占用
来源:CSDN
原文:https://blog.csdn.net/u011414200/article/details/50338073
版权声明:本文为作者原创文章,转载请附上博文链接!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值