020-性能优化与故障排查
学习目标
- 掌握Poetry性能优化的核心技术和策略
- 学会识别和解决Poetry使用中的性能瓶颈
- 熟练运用故障排查工具和技巧
- 建立完善的性能监控和问题诊断体系
- 掌握Poetry在大型项目中的性能调优方法
1. 性能优化概述
1.1 性能瓶颈识别
Poetry在使用过程中可能遇到的性能问题:
# 性能分析工具
poetry run python -m cProfile -o profile.stats your_script.py
# 使用snakeviz可视化性能数据
pip install snakeviz
snakeviz profile.stats
常见性能瓶颈:
- 依赖解析时间过长
- 虚拟环境创建缓慢
- 包安装速度慢
- 锁定文件生成耗时
- 缓存机制不当
1.2 性能监控指标
# 文件路径: scripts/performance_monitor.py
import time
import psutil
import subprocess
from pathlib import Path
class PoetryPerformanceMonitor:
def __init__(self):
self.metrics = {}
def measure_command(self, command: str, description: str = ""):
"""测量Poetry命令执行时间和资源使用"""
print(f"🔍 测量: {description or command}")
# 记录开始状态
start_time = time.time()
start_memory = psutil.virtual_memory().used
try:
# 执行命令
result = subprocess.run(
command.split(),
capture_output=True,
text=True,
timeout=300 # 5分钟超时
)
# 记录结束状态
end_time = time.time()
end_memory = psutil.virtual_memory().used
# 计算指标
execution_time = end_time - start_time
memory_delta = end_memory - start_memory
metrics = {
'command': command,
'execution_time': execution_time,
'memory_usage': memory_delta,
'success': result.returncode == 0,
'stdout': result.stdout,
'stderr': result.stderr
}
self.metrics[description or command] = metrics
print(f"⏱️ 执行时间: {execution_time:.2f}s")
print(f"💾 内存变化: {memory_delta / 1024 / 1024:.2f}MB")
print(f"✅ 状态: {'成功' if metrics['success'] else '失败'}")
return metrics
except subprocess.TimeoutExpired:
print(f"⚠️ 命令超时: {command}")
return None
def generate_report(self):
"""生成性能报告"""
report = []
report.append("# Poetry性能分析报告\n")
for desc, metrics in self.metrics.items():
report.append(f"## {desc}")
report.append(f"- 执行时间: {metrics['execution_time']:.2f}s")
report.append(f"- 内存使用: {metrics['memory_usage'] / 1024 / 1024:.2f}MB")
report.append(f"- 执行状态: {'✅ 成功' if metrics['success'] else '❌ 失败'}")
report.append("")
return "\n".join(report)
# 使用示例
monitor = PoetryPerformanceMonitor()
# 测量常见操作
monitor.measure_command("poetry install", "依赖安装")
monitor.measure_command("poetry update", "依赖更新")
monitor.measure_command("poetry build", "包构建")
monitor.measure_command("poetry publish --dry-run", "发布预检")
# 生成报告
print(monitor.generate_report())
2. 依赖解析优化
2.1 解析器配置优化
# pyproject.toml - 优化依赖解析配置
[tool.poetry]
name = "optimized-project"
version = "0.1.0"
# 优化解析器设置
[tool.poetry.solver]
# 启用新的依赖解析器(Poetry 1.2+)
use-new-installer = true
# 并行解析
parallel = true
# 解析超时设置
timeout = 600
[tool.poetry.dependencies]
python = "^3.9"
# 使用精确版本减少解析时间
requests = "2.28.1"
# 使用兼容版本约束
numpy = "~1.24.0"
# 避免过于宽泛的版本约束
pandas = ">=1.5.0,<2.0.0"
[tool.poetry.group.dev.dependencies]
pytest = "^7.0.0"
black = "^22.0.0"
2.2 依赖解析策略
# 文件路径: scripts/dependency_optimizer.py
import toml
from pathlib import Path
from typing import Dict, List, Tuple
class DependencyOptimizer:
def __init__(self, pyproject_path: str = "pyproject.toml"):
self.pyproject_path = Path(pyproject_path)
self.config = self.load_config()
def load_config(self) -> Dict:
"""加载pyproject.toml配置"""
with open(self.pyproject_path, 'r', encoding='utf-8') as f:
return toml.load(f)
def analyze_dependencies(self) -> Dict[str, List[str]]:
"""分析依赖关系"""
analysis = {
'loose_constraints': [],
'exact_versions': [],
'compatible_versions': [],
'range_versions': []
}
deps = self.config.get('tool', {}).get('poetry', {}).get('dependencies', {})
for name, constraint in deps.items():
if name == 'python':
continue
constraint_str = str(constraint)
if constraint_str.startswith('^'):
analysis['compatible_versions'].append(f"{name}: {constraint}")
elif constraint_str.startswith('~'):
analysis['compatible_versions'].append(f"{name}: {constraint}")
elif ',' in constraint_str or '>=' in constraint_str:
analysis['range_versions'].append(f"{name}: {constraint}")
elif constraint_str.count('.') >= 2 and not any(op in constraint_str for op in ['^', '~', '>', '<', '=']):
analysis['exact_versions'].append(f"{name}: {constraint}")
else:
analysis['loose_constraints'].append(f"{name}: {constraint}")
return analysis
def suggest_optimizations(self) -> List[str]:
"""建议优化方案"""
analysis = self.analyze_dependencies()
suggestions = []
if analysis['loose_constraints']:
suggestions.append("🔧 建议为以下依赖添加版本约束:")
suggestions.extend([f" - {dep}" for dep in analysis['loose_constraints']])
if len(analysis['range_versions']) > 10:
suggestions.append("⚠️ 过多的范围版本约束可能导致解析缓慢")
suggestions.append(" 考虑使用更精确的版本约束")
suggestions.append(f"📊 依赖分析统计:")
suggestions.append(f" - 精确版本: {len(analysis['exact_versions'])}")
suggestions.append(f" - 兼容版本: {len(analysis['compatible_versions'])}")
suggestions.append(f" - 范围版本: {len(analysis['range_versions'])}")
suggestions.append(f" - 宽松约束: {len(analysis['loose_constraints'])}")
return suggestions
def optimize_constraints(self) -> Dict:
"""优化版本约束"""
optimized_config = self.config.copy()
deps = optimized_config['tool']['poetry']['dependencies']
# 优化建议的实现
optimization_rules = {
# 常用库的推荐版本约束
'requests': '~2.28.0',
'numpy': '~1.24.0',
'pandas': '~1.5.0',
'django': '~4.1.0',
'flask': '~2.2.0',
'fastapi': '~0.95.0'
}
for pkg, recommended in optimization_rules.items():
if pkg in deps and isinstance(deps[pkg], str):
if deps[pkg].startswith('*') or deps[pkg] == 'latest':
deps[pkg] = recommended
print(f"🔧 优化 {pkg}: {deps[pkg]} -> {recommended}")
return optimized_config
# 使用示例
optimizer = DependencyOptimizer()
suggestions = optimizer.suggest_optimizations()
for suggestion in suggestions:
print(suggestion)
2.3 缓存优化策略
# Poetry缓存管理
# 查看缓存信息
poetry cache list
# 清理特定缓存
poetry cache clear pypi --all
poetry cache clear _default_cache --all
# 配置缓存目录
export POETRY_CACHE_DIR="/path/to/custom/cache"
# 禁用缓存(调试时使用)
export POETRY_CACHE_DISABLE=1
# 文件路径: scripts/cache_manager.py
import os
import shutil
from pathlib import Path
import subprocess
from typing import Dict, List
class PoetryCacheManager:
def __init__(self):
self.cache_dir = self.get_cache_directory()
def get_cache_directory(self) -> Path:
"""获取Poetry缓存目录"""
result = subprocess.run(
['poetry', 'config', 'cache-dir'],
capture_output=True,
text=True
)
if result.returncode == 0:
return Path(result.stdout.strip())
# 默认缓存目录
if os.name == 'nt': # Windows
return Path.home() / 'AppData' / 'Local' / 'pypoetry' / 'Cache'
else: # Unix-like
return Path.home() / '.cache' / 'pypoetry'
def analyze_cache(self) -> Dict[str, any]:
"""分析缓存使用情况"""
if not self.cache_dir.exists():
return {'total_size': 0, 'directories': []}
total_size = 0
directories = []
for item in self.cache_dir.iterdir():
if item.is_dir():
dir_size = sum(f.stat().st_size for f in item.rglob('*') if f.is_file())
directories.append({
'name': item.name,
'size': dir_size,
'size_mb': dir_size / 1024 / 1024,
'file_count': len(list(item.rglob('*')))
})
total_size += dir_size
return {
'total_size': total_size,
'total_size_mb': total_size / 1024 / 1024,
'directories': sorted(directories, key=lambda x: x['size'], reverse=True)
}
def clean_cache(self, cache_type: str = 'all') -> bool:
"""清理缓存"""
try:
if cache_type == 'all':
subprocess.run(['poetry', 'cache', 'clear', '.', '--all'], check=True)
else:
subprocess.run(['poetry', 'cache', 'clear', cache_type, '--all'], check=True)
return True
except subprocess.CalledProcessError:
return False
def optimize_cache(self) -> List[str]:
"""优化缓存配置"""
optimizations = []
analysis = self.analyze_cache()
if analysis['total_size_mb'] > 1000: # 超过1GB
optimizations.append("🧹 缓存大小超过1GB,建议清理")
optimizations.append(" 运行: poetry cache clear . --all")
# 检查是否有过多的缓存目录
if len(analysis['directories']) > 50:
optimizations.append("📁 缓存目录过多,可能影响性能")
optimizations.append(" 考虑定期清理不常用的缓存")
# 建议缓存配置
optimizations.append("⚙️ 推荐缓存配置:")
optimizations.append(" export POETRY_CACHE_DIR=/fast/ssd/path")
optimizations.append(" poetry config virtualenvs.in-project true")
return optimizations
# 使用示例
cache_manager = PoetryCacheManager()
analysis = cache_manager.analyze_cache()
print(f"📊 缓存分析:")
print(f"总大小: {analysis['total_size_mb']:.2f} MB")
print(f"目录数量: {len(analysis['directories'])}")
for opt in cache_manager.optimize_cache():
print(opt)
3. 构建性能优化
3.1 多阶段构建优化
# 文件路径: Dockerfile.optimized
# 多阶段构建优化示例
FROM python:3.11-slim as builder
# 安装系统依赖
RUN apt-get update && apt-get install -y \
build-essential \
curl \
&& rm -rf /var/lib/apt/lists/*
# 安装Poetry
RUN pip install poetry==1.4.2
# 配置Poetry
ENV POETRY_NO_INTERACTION=1 \
POETRY_VENV_IN_PROJECT=1 \
POETRY_CACHE_DIR=/opt/poetry-cache
# 复制依赖文件
COPY pyproject.toml poetry.lock ./
# 安装依赖(利用Docker层缓存)
RUN poetry install --only=main && rm -rf $POETRY_CACHE_DIR
# 生产阶段
FROM python:3.11-slim as production
# 复制虚拟环境
COPY --from=builder /.venv /.venv
# 确保使用虚拟环境
ENV PATH="/.venv/bin:$PATH"
# 复制应用代码
COPY . .
# 运行应用
CMD ["python", "-m", "your_app"]
3.2 构建脚本优化
# 文件路径: scripts/build_optimizer.py
import subprocess
import time
import os
from pathlib import Path
from typing import Dict, List
class BuildOptimizer:
def __init__(self):
self.build_metrics = {}
def optimize_build_environment(self):
"""优化构建环境"""
optimizations = [
# 设置并行构建
"export MAKEFLAGS='-j$(nproc)'",
# 优化pip配置
"export PIP_NO_CACHE_DIR=1",
"export PIP_DISABLE_PIP_VERSION_CHECK=1",
# Poetry优化
"export POETRY_NO_INTERACTION=1",
"export POETRY_VENV_IN_PROJECT=1",
"export POETRY_INSTALLER_PARALLEL=true"
]
for opt in optimizations:
print(f"🔧 {opt}")
if opt.startswith("export"):
key, value = opt.replace("export ", "").split("=", 1)
os.environ[key] = value.strip("'\"")
def measure_build_step(self, step_name: str, command: List[str]) -> Dict:
"""测量构建步骤性能"""
print(f"📦 执行构建步骤: {step_name}")
start_time = time.time()
try:
result = subprocess.run(
command,
capture_output=True,
text=True,
timeout=1800 # 30分钟超时
)
end_time = time.time()
duration = end_time - start_time
metrics = {
'step': step_name,
'duration': duration,
'success': result.returncode == 0,
'stdout_lines': len(result.stdout.splitlines()),
'stderr_lines': len(result.stderr.splitlines())
}
self.build_metrics[step_name] = metrics
print(f"⏱️ 耗时: {duration:.2f}s")
print(f"✅ 状态: {'成功' if metrics['success'] else '失败'}")
if not metrics['success']:
print(f"❌ 错误输出: {result.stderr[:200]}...")
return metrics
except subprocess.TimeoutExpired:
print(f"⚠️ 构建步骤超时: {step_name}")
return {'step': step_name, 'duration': 1800, 'success': False}
def optimized_build_sequence(self):
"""优化的构建序列"""
# 1. 环境准备
self.optimize_build_environment()
# 2. 依赖安装(仅生产依赖)
self.measure_build_step(
"依赖安装",
["poetry", "install", "--only=main", "--no-dev"]
)
# 3. 代码检查(并行)
self.measure_build_step(
"代码格式检查",
["poetry", "run", "black", "--check", "."]
)
# 4. 类型检查
self.measure_build_step(
"类型检查",
["poetry", "run", "mypy", "."]
)
# 5. 测试(并行)
self.measure_build_step(
"单元测试",
["poetry", "run", "pytest", "-n", "auto", "--tb=short"]
)
# 6. 包构建
self.measure_build_step(
"包构建",
["poetry", "build"]
)
# 7. 生成构建报告
self.generate_build_report()
def generate_build_report(self):
"""生成构建报告"""
total_time = sum(m['duration'] for m in self.build_metrics.values())
print("\n📊 构建性能报告")
print("=" * 50)
print(f"总构建时间: {total_time:.2f}s")
print()
for step, metrics in self.build_metrics.items():
status = "✅" if metrics['success'] else "❌"
percentage = (metrics['duration'] / total_time) * 100
print(f"{status} {step}: {metrics['duration']:.2f}s ({percentage:.1f}%)")
# 优化建议
print("\n💡 优化建议:")
slowest_step = max(self.build_metrics.items(), key=lambda x: x[1]['duration'])
print(f"- 最慢步骤: {slowest_step[0]} ({slowest_step[1]['duration']:.2f}s)")
if slowest_step[1]['duration'] > 60:
print(" 建议: 考虑并行化或缓存优化")
failed_steps = [name for name, metrics in self.build_metrics.items() if not metrics['success']]
if failed_steps:
print(f"- 失败步骤: {', '.join(failed_steps)}")
# 使用示例
optimizer = BuildOptimizer()
optimizer.optimized_build_sequence()
4. 故障排查工具
4.1 诊断脚本
# 文件路径: scripts/poetry_diagnostics.py
import subprocess
import sys
import os
import platform
from pathlib import Path
from typing import Dict, List, Optional
class PoetryDiagnostics:
def __init__(self):
self.issues = []
self.warnings = []
self.info = []
def check_poetry_installation(self) -> Dict[str, any]:
"""检查Poetry安装状态"""
try:
result = subprocess.run(['poetry', '--version'], capture_output=True, text=True)
if result.returncode == 0:
version = result.stdout.strip()
self.info.append(f"✅ Poetry已安装: {version}")
return {'installed': True, 'version': version}
else:
self.issues.append("❌ Poetry未正确安装")
return {'installed': False, 'version': None}
except FileNotFoundError:
self.issues.append("❌ Poetry命令未找到")
return {'installed': False, 'version': None}
def check_python_environment(self) -> Dict[str, any]:
"""检查Python环境"""
python_info = {
'version': platform.python_version(),
'executable': sys.executable,
'platform': platform.platform(),
'architecture': platform.architecture()[0]
}
self.info.append(f"🐍 Python版本: {python_info['version']}")
self.info.append(f"📍 Python路径: {python_info['executable']}")
# 检查Python版本兼容性
major, minor = map(int, python_info['version'].split('.')[:2])
if major < 3 or (major == 3 and minor < 8):
self.issues.append(f"⚠️ Python版本过低: {python_info['version']} (推荐3.8+)")
return python_info
def check_project_structure(self) -> Dict[str, any]:
"""检查项目结构"""
project_files = {
'pyproject.toml': Path('pyproject.toml').exists(),
'poetry.lock': Path('poetry.lock').exists(),
'README.md': Path('README.md').exists(),
'.gitignore': Path('.gitignore').exists()
}
for file, exists in project_files.items():
if exists:
self.info.append(f"✅ 找到文件: {file}")
else:
if file == 'pyproject.toml':
self.issues.append(f"❌ 缺少必需文件: {file}")
elif file == 'poetry.lock':
self.warnings.append(f"⚠️ 缺少锁定文件: {file}")
else:
self.warnings.append(f"💡 建议添加: {file}")
return project_files
def check_dependencies(self) -> Dict[str, any]:
"""检查依赖状态"""
try:
# 检查依赖是否同步
result = subprocess.run(
['poetry', 'check'],
capture_output=True,
text=True
)
if result.returncode == 0:
self.info.append("✅ 依赖配置正确")
else:
self.issues.append(f"❌ 依赖配置问题: {result.stderr}")
# 检查过时的依赖
result = subprocess.run(
['poetry', 'show', '--outdated'],
capture_output=True,
text=True
)
if result.stdout.strip():
outdated_count = len(result.stdout.strip().split('\n'))
self.warnings.append(f"📦 有 {outdated_count} 个依赖可以更新")
else:
self.info.append("✅ 所有依赖都是最新的")
return {'check_passed': result.returncode == 0}
except Exception as e:
self.issues.append(f"❌ 依赖检查失败: {str(e)}")
return {'check_passed': False}
def check_virtual_environment(self) -> Dict[str, any]:
"""检查虚拟环境"""
try:
result = subprocess.run(
['poetry', 'env', 'info'],
capture_output=True,
text=True
)
if result.returncode == 0:
env_info = result.stdout
self.info.append("✅ 虚拟环境正常")
# 解析环境信息
lines = env_info.split('\n')
venv_path = None
python_version = None
for line in lines:
if 'Path:' in line:
venv_path = line.split(':', 1)[1].strip()
elif 'Python:' in line:
python_version = line.split(':', 1)[1].strip()
return {
'exists': True,
'path': venv_path,
'python_version': python_version
}
else:
self.warnings.append("⚠️ 虚拟环境未创建")
return {'exists': False}
except Exception as e:
self.issues.append(f"❌ 虚拟环境检查失败: {str(e)}")
return {'exists': False}
def check_common_issues(self):
"""检查常见问题"""
# 检查权限问题
if os.name != 'nt': # Unix-like系统
cache_dir = Path.home() / '.cache' / 'pypoetry'
if cache_dir.exists() and not os.access(cache_dir, os.W_OK):
self.issues.append("❌ Poetry缓存目录权限不足")
# 检查网络连接
try:
result = subprocess.run(
['poetry', 'source', 'show'],
capture_output=True,
text=True,
timeout=10
)
if result.returncode == 0:
self.info.append("✅ 包源连接正常")
else:
self.warnings.append("⚠️ 包源连接可能有问题")
except subprocess.TimeoutExpired:
self.warnings.append("⚠️ 包源连接超时")
except Exception:
self.warnings.append("⚠️ 无法检查包源连接")
def run_full_diagnosis(self) -> Dict[str, any]:
"""运行完整诊断"""
print("🔍 开始Poetry环境诊断...\n")
# 执行各项检查
poetry_info = self.check_poetry_installation()
python_info = self.check_python_environment()
project_info = self.check_project_structure()
deps_info = self.check_dependencies()
venv_info = self.check_virtual_environment()
self.check_common_issues()
# 生成报告
print("📋 诊断报告")
print("=" * 50)
if self.info:
print("\n✅ 正常状态:")
for item in self.info:
print(f" {item}")
if self.warnings:
print("\n⚠️ 警告:")
for item in self.warnings:
print(f" {item}")
if self.issues:
print("\n❌ 问题:")
for item in self.issues:
print(f" {item}")
# 生成修复建议
self.generate_fix_suggestions()
return {
'poetry': poetry_info,
'python': python_info,
'project': project_info,
'dependencies': deps_info,
'virtual_env': venv_info,
'issues_count': len(self.issues),
'warnings_count': len(self.warnings)
}
def generate_fix_suggestions(self):
"""生成修复建议"""
if not self.issues and not self.warnings:
print("\n🎉 恭喜!没有发现问题")
return
print("\n💡 修复建议:")
# 基于发现的问题提供建议
if any("Poetry未正确安装" in issue for issue in self.issues):
print(" 1. 重新安装Poetry:")
print(" curl -sSL https://install.python-poetry.org | python3 -")
if any("pyproject.toml" in issue for issue in self.issues):
print(" 2. 初始化Poetry项目:")
print(" poetry init")
if any("虚拟环境" in warning for warning in self.warnings):
print(" 3. 创建虚拟环境:")
print(" poetry install")
if any("依赖" in issue for issue in self.issues):
print(" 4. 修复依赖问题:")
print(" poetry lock --no-update")
print(" poetry install")
if any("权限" in issue for issue in self.issues):
print(" 5. 修复权限问题:")
print(" sudo chown -R $USER ~/.cache/pypoetry")
# 使用示例
if __name__ == "__main__":
diagnostics = PoetryDiagnostics()
result = diagnostics.run_full_diagnosis()
4.2 错误处理最佳实践
# 文件路径: scripts/error_handler.py
import logging
import traceback
from typing import Dict, List, Optional, Callable
from functools import wraps
class PoetryErrorHandler:
def __init__(self):
self.setup_logging()
self.error_patterns = self.load_error_patterns()
def setup_logging(self):
"""设置日志记录"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('poetry_errors.log'),
logging.StreamHandler()
]
)
self.logger = logging.getLogger(__name__)
def load_error_patterns(self) -> Dict[str, Dict]:
"""加载常见错误模式和解决方案"""
return {
'dependency_resolution': {
'patterns': [
'Could not find a version that satisfies',
'No matching distribution found',
'dependency resolution failed'
],
'solutions': [
'检查依赖版本约束是否过于严格',
'尝试更新Poetry: poetry self update',
'清理缓存: poetry cache clear . --all',
'检查Python版本兼容性'
]
},
'network_issues': {
'patterns': [
'Connection timeout',
'SSL certificate verify failed',
'Could not fetch URL'
],
'solutions': [
'检查网络连接',
'配置代理: poetry config http-basic.pypi username password',
'使用国内镜像源',
'检查防火墙设置'
]
},
'permission_errors': {
'patterns': [
'Permission denied',
'Access is denied',
'Operation not permitted'
],
'solutions': [
'检查文件权限: ls -la',
'使用sudo运行(不推荐)',
'修改目录权限: chmod 755',
'检查虚拟环境权限'
]
},
'lock_file_issues': {
'patterns': [
'poetry.lock is not consistent',
'lock file is not up to date',
'Hash mismatch'
],
'solutions': [
'重新生成锁定文件: poetry lock',
'删除锁定文件后重新安装: rm poetry.lock && poetry install',
'检查pyproject.toml语法',
'更新依赖: poetry update'
]
}
}
def analyze_error(self, error_message: str) -> Optional[Dict]:
"""分析错误信息并提供解决方案"""
for category, info in self.error_patterns.items():
for pattern in info['patterns']:
if pattern.lower() in error_message.lower():
return {
'category': category,
'pattern': pattern,
'solutions': info['solutions']
}
return None
def handle_poetry_error(self, func: Callable) -> Callable:
"""Poetry错误处理装饰器"""
@wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
error_message = str(e)
self.logger.error(f"Poetry操作失败: {error_message}")
# 分析错误
analysis = self.analyze_error(error_message)
if analysis:
print(f"\n🔍 错误分析:")
print(f"类别: {analysis['category']}")
print(f"模式: {analysis['pattern']}")
print(f"\n💡 建议解决方案:")
for i, solution in enumerate(analysis['solutions'], 1):
print(f" {i}. {solution}")
else:
print(f"\n❌ 未知错误: {error_message}")
print("请查看完整错误信息或寻求帮助")
# 记录详细错误信息
self.logger.error(f"完整错误信息:\n{traceback.format_exc()}")
raise
return wrapper
def create_error_report(self, error_info: Dict) -> str:
"""创建错误报告"""
report = []
report.append("# Poetry错误报告")
report.append(f"时间: {error_info.get('timestamp', 'Unknown')}")
report.append(f"命令: {error_info.get('command', 'Unknown')}")
report.append(f"错误: {error_info.get('error', 'Unknown')}")
report.append("")
if 'analysis' in error_info:
analysis = error_info['analysis']
report.append("## 错误分析")
report.append(f"类别: {analysis['category']}")
report.append(f"匹配模式: {analysis['pattern']}")
report.append("")
report.append("## 建议解决方案")
for i, solution in enumerate(analysis['solutions'], 1):
report.append(f"{i}. {solution}")
report.append("")
report.append("## 环境信息")
report.append(f"Python版本: {error_info.get('python_version', 'Unknown')}")
report.append(f"Poetry版本: {error_info.get('poetry_version', 'Unknown')}")
report.append(f"操作系统: {error_info.get('os_info', 'Unknown')}")
return "\n".join(report)
# 使用示例
error_handler = PoetryErrorHandler()
@error_handler.handle_poetry_error
def install_dependencies():
"""安装依赖的示例函数"""
import subprocess
result = subprocess.run(['poetry', 'install'], check=True)
return result
# 测试错误处理
try:
install_dependencies()
except Exception as e:
print("错误已被处理")
5. 性能监控系统
5.1 持续性能监控
# 文件路径: scripts/performance_monitor.py
import time
import psutil
import json
from datetime import datetime
from pathlib import Path
from typing import Dict, List
import subprocess
class ContinuousPerformanceMonitor:
def __init__(self, log_file: str = "poetry_performance.json"):
self.log_file = Path(log_file)
self.metrics_history = self.load_history()
def load_history(self) -> List[Dict]:
"""加载历史性能数据"""
if self.log_file.exists():
with open(self.log_file, 'r') as f:
return json.load(f)
return []
def save_metrics(self, metrics: Dict):
"""保存性能指标"""
self.metrics_history.append(metrics)
# 保留最近100条记录
if len(self.metrics_history) > 100:
self.metrics_history = self.metrics_history[-100:]
with open(self.log_file, 'w') as f:
json.dump(self.metrics_history, f, indent=2)
def measure_poetry_command(self, command: List[str]) -> Dict:
"""测量Poetry命令性能"""
start_time = time.time()
start_memory = psutil.virtual_memory().used
start_cpu = psutil.cpu_percent()
try:
result = subprocess.run(
command,
capture_output=True,
text=True,
timeout=600
)
end_time = time.time()
end_memory = psutil.virtual_memory().used
end_cpu = psutil.cpu_percent()
metrics = {
'timestamp': datetime.now().isoformat(),
'command': ' '.join(command),
'execution_time': end_time - start_time,
'memory_delta': end_memory - start_memory,
'cpu_usage': (start_cpu + end_cpu) / 2,
'success': result.returncode == 0,
'output_size': len(result.stdout) + len(result.stderr)
}
self.save_metrics(metrics)
return metrics
except subprocess.TimeoutExpired:
metrics = {
'timestamp': datetime.now().isoformat(),
'command': ' '.join(command),
'execution_time': 600,
'memory_delta': 0,
'cpu_usage': 0,
'success': False,
'error': 'timeout'
}
self.save_metrics(metrics)
return metrics
def analyze_performance_trends(self) -> Dict:
"""分析性能趋势"""
if len(self.metrics_history) < 2:
return {'message': '数据不足,无法分析趋势'}
# 按命令分组
command_groups = {}
for metric in self.metrics_history:
cmd = metric['command']
if cmd not in command_groups:
command_groups[cmd] = []
command_groups[cmd].append(metric)
trends = {}
for cmd, metrics in command_groups.items():
if len(metrics) < 2:
continue
times = [m['execution_time'] for m in metrics]
avg_time = sum(times) / len(times)
recent_avg = sum(times[-5:]) / min(5, len(times))
trend = 'stable'
if recent_avg > avg_time * 1.2:
trend = 'degrading'
elif recent_avg < avg_time * 0.8:
trend = 'improving'
trends[cmd] = {
'average_time': avg_time,
'recent_average': recent_avg,
'trend': trend,
'sample_count': len(metrics)
}
return trends
def generate_performance_report(self) -> str:
"""生成性能报告"""
trends = self.analyze_performance_trends()
report = []
report.append("# Poetry性能监控报告")
report.append(f"生成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
report.append(f"监控记录数: {len(self.metrics_history)}")
report.append("")
if not trends or 'message' in trends:
report.append("数据不足,无法生成详细报告")
return "\n".join(report)
report.append("## 命令性能趋势")
for cmd, data in trends.items():
trend_emoji = {
'improving': '📈',
'degrading': '📉',
'stable': '➡️'
}
report.append(f"### {cmd}")
report.append(f"- 平均执行时间: {data['average_time']:.2f}s")
report.append(f"- 最近平均时间: {data['recent_average']:.2f}s")
report.append(f"- 趋势: {trend_emoji[data['trend']]} {data['trend']}")
report.append(f"- 样本数量: {data['sample_count']}")
report.append("")
# 性能建议
report.append("## 性能优化建议")
slow_commands = [cmd for cmd, data in trends.items()
if data['average_time'] > 30]
if slow_commands:
report.append("### 慢速命令优化")
for cmd in slow_commands:
report.append(f"- {cmd}: 考虑缓存优化或并行处理")
degrading_commands = [cmd for cmd, data in trends.items()
if data['trend'] == 'degrading']
if degrading_commands:
report.append("### 性能退化警告")
for cmd in degrading_commands:
report.append(f"- {cmd}: 性能正在下降,需要调查原因")
return "\n".join(report)
# 使用示例
monitor = ContinuousPerformanceMonitor()
# 监控常见命令
commands_to_monitor = [
['poetry', 'install'],
['poetry', 'update'],
['poetry', 'build'],
['poetry', 'check']
]
for cmd in commands_to_monitor:
print(f"监控命令: {' '.join(cmd)}")
metrics = monitor.measure_poetry_command(cmd)
print(f"执行时间: {metrics['execution_time']:.2f}s")
print(f"成功: {metrics['success']}")
print()
# 生成报告
report = monitor.generate_performance_report()
print(report)
5.2 自动化监控脚本
#!/bin/bash
# 文件路径: scripts/auto_monitor.sh
# Poetry自动化性能监控脚本
set -e
# 配置
LOG_DIR="./logs"
PERFORMANCE_LOG="$LOG_DIR/poetry_performance.log"
ALERT_THRESHOLD=60 # 秒
# 创建日志目录
mkdir -p "$LOG_DIR"
# 日志函数
log() {
echo "[$(date '+%Y-%m-%d %H:%M:%S')] $1" | tee -a "$PERFORMANCE_LOG"
}
# 性能测试函数
measure_command() {
local cmd="$1"
local description="$2"
log "开始测试: $description"
local start_time=$(date +%s.%N)
if eval "$cmd" > /dev/null 2>&1; then
local end_time=$(date +%s.%N)
local duration=$(echo "$end_time - $start_time" | bc)
log "✅ $description 完成: ${duration}s"
# 检查是否超过阈值
if (( $(echo "$duration > $ALERT_THRESHOLD" | bc -l) )); then
log "⚠️ 警告: $description 执行时间过长 (${duration}s > ${ALERT_THRESHOLD}s)"
# 发送告警(可以集成邮件、Slack等)
echo "Performance Alert: $description took ${duration}s" >> "$LOG_DIR/alerts.log"
fi
echo "$duration"
else
log "❌ $description 失败"
echo "failed"
fi
}
# 系统信息收集
collect_system_info() {
log "收集系统信息"
{
echo "=== 系统信息 ==="
echo "时间: $(date)"
echo "Poetry版本: $(poetry --version 2>/dev/null || echo 'Not installed')"
echo "Python版本: $(python --version 2>/dev/null || echo 'Not found')"
echo "内存使用: $(free -h | grep '^Mem:' || echo 'N/A')"
echo "磁盘使用: $(df -h . | tail -1 || echo 'N/A')"
echo "CPU负载: $(uptime || echo 'N/A')"
echo ""
} >> "$LOG_DIR/system_info.log"
}
# 主监控循环
main_monitor() {
log "开始Poetry性能监控"
# 收集系统信息
collect_system_info
# 测试常见命令
local commands=(
"poetry check:配置检查"
"poetry show:依赖列表"
"poetry env info:环境信息"
)
for cmd_desc in "${commands[@]}"; do
IFS=':' read -r cmd desc <<< "$cmd_desc"
measure_command "$cmd" "$desc"
sleep 1
done
# 如果存在pyproject.toml,进行更多测试
if [[ -f "pyproject.toml" ]]; then
log "检测到Poetry项目,执行项目相关测试"
# 依赖安装测试(dry-run)
measure_command "poetry install --dry-run" "依赖安装预检"
# 构建测试(如果有源码)
if [[ -d "src" ]] || [[ -f "main.py" ]]; then
measure_command "poetry build" "包构建"
fi
fi
log "监控周期完成"
}
# 报告生成
generate_report() {
local report_file="$LOG_DIR/performance_report_$(date +%Y%m%d_%H%M%S).md"
{
echo "# Poetry性能监控报告"
echo ""
echo "生成时间: $(date)"
echo ""
echo "## 最近性能数据"
echo '```'
tail -20 "$PERFORMANCE_LOG"
echo '```'
echo ""
echo "## 系统信息"
echo '```'
tail -10 "$LOG_DIR/system_info.log"
echo '```'
echo ""
if [[ -f "$LOG_DIR/alerts.log" ]]; then
echo "## 性能告警"
echo '```'
cat "$LOG_DIR/alerts.log"
echo '```'
fi
} > "$report_file"
log "报告已生成: $report_file"
}
# 清理旧日志
cleanup_logs() {
log "清理旧日志文件"
# 保留最近7天的日志
find "$LOG_DIR" -name "*.log" -mtime +7 -delete 2>/dev/null || true
find "$LOG_DIR" -name "*.md" -mtime +7 -delete 2>/dev/null || true
}
# 主函数
main() {
case "${1:-monitor}" in
"monitor")
main_monitor
;;
"report")
generate_report
;;
"cleanup")
cleanup_logs
;;
"continuous")
log "启动连续监控模式"
while true; do
main_monitor
sleep 300 # 5分钟间隔
done
;;
*)
echo "用法: $0 [monitor|report|cleanup|continuous]"
exit 1
;;
esac
}
# 执行主函数
main "$@"
6. 实践练习
练习1:性能基准测试
创建一个脚本,对比不同Poetry配置下的性能差异:
- 默认配置 vs 优化配置
- 缓存启用 vs 缓存禁用
- 并行安装 vs 串行安装
练习2:故障模拟与排查
模拟常见的Poetry故障场景:
- 依赖冲突
- 网络连接问题
- 权限错误
- 锁定文件损坏
练习3:监控系统集成
将性能监控集成到CI/CD流程中:
- 自动性能测试
- 性能回归检测
- 告警通知机制
总结
本章节详细介绍了Poetry的性能优化和故障排查技术:
核心要点
- 性能优化策略:依赖解析、缓存管理、构建优化
- 故障排查工具:诊断脚本、错误分析、修复建议
- 监控系统:持续监控、性能趋势分析、自动化报告
- 最佳实践:预防性维护、性能基准、问题预警
实践建议
- 建立性能基准和监控体系
- 定期进行性能优化和故障排查
- 自动化常见的维护任务
- 建立完善的错误处理机制
下一步
恭喜完成Poetry教程"实战应用篇"的学习!接下来将进入"专家级篇",深入学习Poetry的源码解析、插件开发、企业级部署等高级主题。
💡 提示: 性能优化是一个持续的过程,需要根据项目的具体情况和发展阶段不断调整策略。建议建立完善的监控和告警机制,及时发现和解决性能问题。