机器学习
lvjun93
这个作者很懒,什么都没留下…
展开
-
逻辑回归 广告点击率预估
原文链接: http://www.cnblogs.com/biyeymyhjob/archive/2012/07/18/2595410.html转载 2012-12-03 20:09:43 · 2280 阅读 · 0 评论 -
Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization
本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning转载 2012-12-06 16:55:30 · 806 阅读 · 0 评论 -
在K均值聚类的时候发现在某一次迭代过程中,有一类变为了空类,如何解释这个现象,怎么处理?
导致这种情况的原因有很多,下面是几个可能的方面:1.数据本身的问题比如虽然有一组体育类的新闻,但是这组数据实际上距离娱乐类的距离比较近,那么很有可能导致结果体育类的分类个数为0。验证方法就是聚类完成之后,找到个数为0的分类,找到实际上属于这个分类的文本,手动的计算其距离其他几个分类中心点的距离,看看是不是太近。2.算法上的问题相似度的计算方法有很多种,一定要原创 2013-01-15 22:16:04 · 4414 阅读 · 1 评论 -
机器学习用到的数学知识
1、概率:全概率公式,联合概率,贝叶斯法则,独立性和条件独立性,KL距离,似然函数,马尔科夫模型。多元高斯分布。2、线性代数。向量、空间中的点、内积、向量间夹角、欧式距离、线性超平面、垂直的概念、点到超平面的距离。矩阵、逆矩阵、正定矩阵。3、微积分:函数导数、泰勒展开、函数最优值和导数为零的关系。自变量为向量的函数的导数。4、优化:无约束优化和导数为零的关系,带约束优化问题原创 2013-03-12 11:42:24 · 1315 阅读 · 1 评论 -
isodata算法确定k均值聚类的k值
http://baike.baidu.com/view/3167773.htmhttp://www.cnblogs.com/huadongw/p/4101422.html聚类算法:ISODATA算法1. 与K-均值算法的比较–K-均值算法通常适合于分类数目已知的聚类,而ISODATA算法则更加灵活;–从算法角度看, ISODATA算法与K-均值算法相似,聚类中心转载 2015-06-08 18:35:34 · 3178 阅读 · 0 评论 -
结合代码带你理解DeepFM 原创: 王腾龙 DataFunTalk 1周前
https://mp.weixin.qq.com/s/KFUtS4Cd9-XSBlS4u7HZLA# https://mp.weixin.qq.com/s/KFUtS4Cd9-XSBlS4u7HZLA'''DeepFM相当于 Google 的 Wide&Deep ,这篇文章 wide 的部分是需要预先训练的 FM 算法,也就是说它不是一个 end-to-end 的方法。De...转载 2019-05-14 18:21:03 · 447 阅读 · 0 评论 -
梯度下降实现简单实现 gradient descent
#coding=utf-8import numpy as npimport randomfrom numpy import genfromtxtimport sysdef getData(dataSet): m, n = np.shape(dataSet) print 'np.shape(dataSet):',np.shape(dataSet) trainD...原创 2019-08-23 12:38:08 · 219 阅读 · 0 评论