HDU2929:Bigger is Better

Bigger is Better

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 559    Accepted Submission(s): 155


Problem Description
Bob has n matches. He wants to compose numbers using the following scheme (that is, digit 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 needs 6, 2, 5, 5, 4, 5, 6, 3, 7, 6 matches):

Write a program to make a non-negative integer which is a multiple of m. The integer should be as big as possible.
 

Input
The input consists of several test cases. Each case is described by two positive integers n (n ≤ 100) and m (m ≤ 3000), as described above. The last test case is followed by a single zero, which should not be processed.
 

Output
For each test case, print the case number and the biggest number that can be made. If there is no solution, output -1.Note that Bob don't have to use all his matches.
 

Sample Input
  
  
6 3 5 6 0
 

Sample Output
  
  
Case 1: 111 Case 2: -1
 

Source
 

Recommend
lcy
 
06年区域赛,西安赛区的B题,佳哥出的,犀利的DP。
一开始看此题,认为是数学方法加构造答案,推了一会就放弃了,之后看了同场那道网络流的题,不过鉴于我对于那道网络流思路相当恶心,就返回继续思考这道题。
之后,发现这道题可以套用我昨天那道DP的转移方程。
dp[i][j] = max{dp[i][j],  dp[i + a[k]][(j * 10 + k) % m]},其中,i表示用了i个木棍,j表示i个木棍构成的数mod m后是j,dp[i][j]表示构成这个最大数的长度。(因为是求mod,可以想到取mod后的状态,这样可以有效的减少状态数目。)
说一下佳哥题解,也是让我WA了无数次的坑。
关于那个dp[i][j]的转移,我们可以看出每次转移的时候,添加数字k是添加在了末尾一位,但我一开是dp是添加在了首位,佳哥说添加首位是错误的,但没有给出证明,我找到了反例:11 6,应该是774,但我一开是得的是747,不过为什么错,我无法证明了.....
在获得上述转移状态后,我们可以用d数组记录相应状态下,最优解的最后一位,这样我们输出答案就可以从第一位递归寻找了。
至于无解的情况,只要n>=6都会有解,因为0是六根火柴......
其他思路:dp[i][j]记录最优答案,这样会涉及到大数运算。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
using  namespace std;

const  int maxn = 101;
const  int maxm = 3001;
const  int used[10] = {6, 2, 5, 5, 4, 5, 6, 3, 7, 6};

typedef  long  long LL;

LL f[maxn][maxm], g[maxn][maxm];
LL n, m, i, j, k, u, v, Len, task;

LL max(LL i, LL j)
{
     if (i > j)  return i;
     return j;
}

void printf(LL x, LL y)
{
    LL u, v;
     while (g[x][y] != 10)
    {
        u = x + used[g[x][y]];
        v = (y * 10 + g[x][y]) % m;
        cout << g[x][y];
        x = u;
        y = v;
    }
    cout << endl;
}

int main()
{
    task = 0;
     while (cin >> n && n)
    {
        cin >> m;
        printf("Case %d: ", ++task);
        memset(f, -1,  sizeof(f));
        Len = 0;
        f[0][0] = 0;
         for (i = 0; i <= n; ++i)
        {
             for (j = 0; j <= m - 1; ++j)
            {
                 if (f[i][j] >= 0)
                {
                     for (k = 0; k <= 9; ++k)
                    {
                         if (i + used[k] <= n)
                        {
                             if (i == 0 && k == 0)  continue;
                            u = i + used[k];
                            v = (j * 10 + k) % m;
                            f[u][v] = max(f[u][v], f[i][j] + 1);
                             if (v == 0) Len = max(Len, f[u][v]);
                        }
                    }
                }
            }
        }
        memset(g, -1,  sizeof(g));
         for (i = n; i >= 0; --i)
        {
             for (j = 0; j <= m - 1; ++j)
            {
                 if (f[i][j] >= 0)
                {
                     if (f[i][j] == Len && j == 0)
                    {
                        g[i][j] = 10;
                         continue;
                    }
                     for (k = 9; k >= 0; --k)
                    {
                         if (i + used[k] <= n)
                        {
                            u = i + used[k];
                            v = (j * 10 + k) % m;
                             if (f[u][v] == f[i][j] + 1 && g[u][v] >= 0)
                            {
                                g[i][j] = k;
                                 break;
                            }
                        }
                    }
                }
            }
        }
         if (g[0][0] > 0 && g[0][0] != 10) printf(0, 0);
         else
         if (n >= 6) cout << 0 << endl;
         else
        cout << -1 << endl;
    }
     return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值