数值分析多种算法C语言代码-推荐

1、离散傅立叶变换与反变换

/************************************************************************ 
* 离散傅立叶变换与反变换 
* 输入: x--要变换的数据的实部 
* y--要变换的数据的虚部 
*       a--变换结果的实部 
*       b--变换结果的虚部 
*       n--数据长度 
*    sign--sign=1时,计算离散傅立叶正变换;sign=-1时;计算离散傅立叶反变换 
************************************************************************/ 
void dft(double x[],double y[],double a[],double b[],int n,int sign) 

int i,k; 
double c,d,q,w,s; 

q=6.28318530718/n; 
for(k=0;k<n;k++) 

w=k*q; 
a[k]=b[k]=0.0; 
for(i=0;i<n;i++) 

d=i*w; 
c=cos(d); 
s=sin(d)*sign; 
a[k]+=c*x
+s*y
b[k]+=c*y
-s*x


if(sign==-1) 

c=1.0/n; 
for(k=0;k<n;k++) 

a[k]=c*a[k]; 
b[k]=c*b[k]; 


}

 

2四阶亚当姆斯预估计求解初值问题

/************************************************************************ 
* 用四阶亚当姆斯预估计求解初值问题,其中一阶微分方程未y'=f(x,y) 
* 初始条件为x=x[0]时,y=y[0]. 
* 输入: f--函数f(x,y)的指针 
*       x--自变量离散值数组(其中x[0]为初始条件) 
*       y--对应于自变量离散值的函数值数组(其中y[0]为初始条件) 
*       h--计算步长 
*       n--步数 
* 输出: x为说求解的自变量离散值数组 
*       y为所求解对应于自变量离散值的函数值数组 
************************************************************************/ 
double adams(double(*f)(double,double),double x[], 
 double y[],double h,int n) 

double dy[4],c,p,c1,p1,m; 
int i,j; 

runge_kuta(f,x,y,h,3); 
for(i=0;i<4;i++) 
dy
=(*f)(x,y); 
c=0.0; p=0.0; 
for(i=4;i<n+1;i++) 

x
=x[i-1]+h; 
p1=y[i-1]+h*(55*dy[3]-59*dy[2]+37*dy[1]-9*dy[0])/24; 
m=p1+251*(c-p)/270; 
c1=y[i-1]+h*(9*(*f)(x
,m)+19*dy[3]-5*dy[2]+dy[1])/24; 
y
=c1-19*(c1-p1)/270; 
c=c1; p=p1; 
for(j=0;j<3;j++) 
dy[j]=dy[j+1]; 
dy[3]=(*f)(x
,y); 

return(0); 
}
 

3、几种常见随机数的产生

#include "stdlib.h" 
#include "stdio.h" 
#include "math.h" 



double uniform(double a,double b,long int* seed); 
double gauss(double mean,double sigma,long int *seed); 
double exponent(double beta,long int *seed); 
double laplace(double beta,long int* seed); 
double rayleigh(double sigma,long int *seed); 
double weibull(double a,double b,long int*seed); 
int bn(double p,long int*seed); 
int bin(int n,double p,long int*seed); 
int poisson(double lambda,long int *seed); 



void main() 

double a,b,x,mean; 
int i,j; 
long int s; 

a=4; 
b=0.7; 
s=13579; 
mean=0; 
for(i=0;i<10;i++) 

for(j=0;j<5;j++) 

x=poisson(a,&s); 
mean+=x; 
printf("%-13.7f",x); 

printf("\n"); 

mean/=50; 
printf("平均值为:%-13.7f\n",mean); 





/******************************************************************* 
* 求[a,b]上的均匀分布 
* 输入: a--双精度实型变量,给出区间的下限 
*       b--双精度实型变量,给出区间的上限 
*    seed--长整型指针变量,*seed为随机数的种子   
********************************************************************/ 
double uniform(double a,double b,long int*seed) 

double t; 
*seed=2045*(*seed)+1; 
*seed=*seed-(*seed/1048576)*1048576; 
t=(*seed)/1048576.0; 
t=a+(b-a)*t; 

return(t); 


/******************************************************************* 
* 正态分布 
* 输入: mean--双精度实型变量,正态分布的均值 
*      sigma--双精度实型变量,正态分布的均方差 
*       seed--长整型指针变量,*seed为随机数的种子   
********************************************************************/ 
double gauss(double mean,double sigma,long int*seed) 

int i; 
double x,y; 
for(x=0,i=0;i<12;i++) 
x+=uniform(0.0,1.0,seed); 
x=x-6.0; 
y=mean+x*sigma; 

return(y); 



/******************************************************************* 
* 指数分布 
* 输入: beta--指数分布均值 
*       seed--种子 
*******************************************************************/ 
double exponent(double beta,long int *seed) 

double u,x; 
u=uniform(0.0,1.0,seed); 
x=-beta*log(u); 

return(x); 


/******************************************************************* 
* 拉普拉斯随机分布 
* beta--拉普拉斯分布的参数 
* *seed--随机数种子 
*******************************************************************/ 
double laplace(double beta,long int* seed) 

double u1,u2,x; 

u1=uniform(0.,1.,seed); 
u2=uniform(0.,1.,seed); 
if(u1<=0.5) 
x=-beta*log(1.-u2); 
else 
x=beta*log(u2); 

return(x); 




/******************************************************************** 
* 瑞利分布 

********************************************************************/ 
double rayleigh(double sigma,long int *seed) 

double u,x; 
u=uniform(0.,1.,seed); 
x=-2.0*log(u); 
x=sigma*sqrt(x); 
return(x); 


/************************************************************************/ 
/* 韦伯分布                                                                     */ 
/************************************************************************/ 
double weibull(double a,double b,long int*seed) 

double u,x; 

u=uniform(0.0,1.0,seed); 
u=-log(u); 
x=b*pow(u,1.0/a); 

return(x); 


/************************************************************************/ 
/* 贝努利分布                                                           */ 
/************************************************************************/ 
int bn(double p,long int*seed) 

int x; 
double u; 
u=uniform(0.0,1.0,seed); 
x=(u<=p)?1:0; 
return(x); 


/************************************************************************/ 
/* 二项式分布                                                           */ 
/************************************************************************/ 
int bin(int n,double p,long int*seed) 

int i,x; 
for(x=0,i=0;i<n;i++) 
x+=bn(p,seed); 
return(x); 


/************************************************************************/ 
/* 泊松分布                                                             */ 
/************************************************************************/ 
int poisson(double lambda,long int *seed) 

int i,x; 
double a,b,u; 

a=exp(-lambda); 
i=0; 
b=1.0; 
do { 
u=uniform(0.0,1.0,seed); 
b*=u; 
i++; 
} while(b>=a); 
x=i-1; 
return(x); 

4、指数平滑法预测数据

/************************************************************************ 
* 本算法用指数平滑法预测数据 
* 输入: k--平滑周期 
*       n--原始数据个数 
*       m--预测步数 
*       alfa--加权系数 
*       x--指向原始数据数组指针 
* 输出: s1--返回值为指向一次平滑结果数组指针 
*       s2--返回值为指向二次指数平滑结果数组指针 
*       s3--返回值为指向三次指数平滑结果数组指针 
*       xx--返回值为指向预测结果数组指针 
************************************************************************/ 
void phyc(int k,int n,int m,double alfa,double x[N_MAX], 
 double s1[N_MAX],double s2[N_MAX],double s3[N_MAX],double xx[N_MAX]) 

double a,b,c,beta; 
int i; 

s1[k-1]=0; 
for(i=0;i<k;k++) 
s1[k-1]+=x

s1[k-1]/=k; 
for(i=k;i<=n;i++) 
s1
=alfa*x+(1-alfa)*s1[i-1]; 
s2[2*k-2]=0; 
for(i=k-1;i<2*k-1;i++) 
s2[2*k-2]+=s1

s2[2*k-2]/=k; 
for(i=2*k-1;i<=n;i++) 
s2
=alfa*s1+(1-alfa)*s2[i-1]; 
s3[3*k-3]=0; 
for(i=2*k-2;i<3*k-2;i++) 
s3[3*k-3]+=s2

s3[3*k-3]/=k; 
for(i=3*k-2;i<=n;i++) 
s3
=alfa*s2+(1-alfa)*s3[i-1]; 
beta=alfa/(2*(1-alfa)*(1-alfa)); 
for(i=3*k-3;i<=n;i++) 

a=3*s1
-3*s2+s3
b=beta*((6-5*alfa)*s1
-2*(5-4*alfa)*s2+(4-3*alfa)*s3); 
c=beta*alfa*(s1
-2*s2+s3); 
xx
=a+b*m+c*m*m; 


5、四阶(定步长)龙格--库塔法求解微分初值问题

精度比欧拉方法高 
但是感觉依然不理想 



/************************************************************************ 
* 用四阶(定步长)龙格--库塔法求解初值问题,其中一阶微分方程未y'=f(x,y) 
* 初始条件为x=x[0]时,y=y[0]. 
* 输入: f--函数f(x,y)的指针 
*       x--自变量离散值数组(其中x[0]为初始条件) 
*       y--对应于自变量离散值的函数值数组(其中y[0]为初始条件) 
*       h--计算步长 
*       n--步数 
* 输出: x为说求解的自变量离散值数组 
*       y为所求解对应于自变量离散值的函数值数组 
************************************************************************/ 
double runge_kuta(double(*f)(double,double),double x[], 
 double y[],double h,int n) 

int i; 
double xs,ys,xp,yp,dy; 
xs=x[0]+n*h; 
for(i=0;i<n;i++) 

ys=y
dy=(*f)(x,y); //k1 
y[i+1]=y+h*dy/6; 
xp=x+h/2; 
yp=ys+h*dy/2; 
dy=(*f)(xp,yp); //k2 
y[i+1]+=h*dy/3; 
yp=ys+h*dy/2; 
dy=(*f)(xp,yp);  //k3 
y[i+1]+=h*dy/3; 
xp+=h/2; 
yp=ys+h*dy; 
dy=(*f)(xp,yp); //k4 
y[i+1]+=h*dy/6; 
x[i+1]=xp; 
if(x[i+1]>=xs) 
return (0); 

return(0); 


6、改进的欧拉方法求解微分方程初值问题

感觉精度比较低 

/************************************************************************ 
* 用改进的欧拉方法求解初值问题,其中一阶微分方程未y'=f(x,y) 
* 初始条件为x=x[0]时,y=y[0]. 
* 输入: f--函数f(x,y)的指针 
*       x--自变量离散值数组(其中x[0]为初始条件) 
*       y--对应于自变量离散值的函数值数组(其中y[0]为初始条件) 
*       h--计算步长 
*       n--步数 
* 输出: x为说求解的自变量离散值数组 
*       y为所求解对应于自变量离散值的函数值数组 
************************************************************************/ 
double proved_euler(double(*f)(double,double),double x[], 
double y[],double h,int n) 

int i; 
double xs,ys,yp; 

for(i=0;i<n;i++) 

ys=y
xs=x
y[i+1]=y
yp=(*f)(xs,ys); //k1 
y[i+1]+=yp*h/2.0; 
ys+=h*yp; 
xs+=h; 
yp=(*f)(xs,ys); //k2 
y[i+1]+=yp*h/2.0; 
x[i+1]=xs; 

return(0); 

7。中心差分(矩形)公式求导


 



/************************************************************************ 
* 中心差分(矩形)公式计算函数f(x)在a点的导数值 
* 输入: f--函数f(x)的指针 
*       a--求导点 
*       h--初始步长 
*       eps--计算精度 
*       max_it--最大循环次数 
* 输出: 返回值为f(x)在a点的导数 
************************************************************************/ 
double central_difference(double (*f)(double),double a, 
 double h,double eps,int max_it) 

double ff,gg; 
int k; 
ff=0.0; 
for(k=0;k<max_it;k++) 

gg=((*f)(a+h)-(*f)(a-h))/(h+h); 
if(fabs(gg-ff)<eps) 
return(gg); 
h*=0.5; 
ff=gg; 

if(k==max_it) 

printf("未能达到精度要求,需增大迭代次数!"); 
return(0); 

return(gg); 



8。高斯10点法求积分

code] 
/******************************************************************** 
* 用高斯10点法计算函数f(x)从a到b的积分值 
* 输入: f--函数f(x)的指针 
*       a--积分下限 
*       b--积分上限 
* 输出: 返回值为f(x)从a点到b点的积分值 
*******************************************************************/ 
double gauss_legendre(double(*f)(double),double a,double b) 

const int n=10; 
const double z[10]={-0.9739065285,-0.8650633677,-0.6794095683, 
-0.4333953941,-0.1488743390,0.1488743390, 
0.4333953941,0.6794095683,0.8650633677, 
0.9739065285}; 
const double w[10]={0.0666713443,0.1494513492,0.2190863625, 
0.2692667193,0.2955242247,0.2955242247, 
0.2692667193,0.2190863625,0.1494513492, 
0.0666713443}; 
double y,gg; 
int i; 
gg=0.0; 
for(i=0;i<n;i++) 

y=(z[i]*(b-a)+a+b)/2.0; 
gg+=w[i]*(*f)((double)y); 

return((double)((gg*(b-a)/2.0))); 

[/code] 

9、龙贝格法求积分


 


/******************************************************************** 
* 用龙贝格法计算函数f(x)从a到b的积分值 
* 输入: f--函数f(x)的指针 
*       a--积分下限 
*       b--积分上限 
*       eps--计算精度 
*       max_it--最大迭代次数 
* 输出: 返回值为f(x)从a点到b点的积分值 
*******************************************************************/ 
double romberg(double(*f)(double),double a,double b, 
                          double eps,int max_it) 

double *t,h; 
int i,m,k; 

if(!(t=(double *)malloc(max_it*sizeof(double)+1))) 
return(ERROR_CODE); 
h=b-a; 
t[1]=h*((*f)(a)+(*f)(b))/2.0; 
printf("%18.10e\n",t[1]); 
for(k=2;k<max_it+1;k++) 

double s,sm; 
h*=0.5; 
s=0.0; 
for(i=0;i<pow(2,k-2);i++) 
s+=(*f)(a+(2*i+1)*h); 
sm=t[1]; 
t[1]=0.5*t[1]+h*s; 
for(m=2;m<k+1;m++) 

s=t[m]; 
t[m]=t[m-1]+(t[m-1]-sm)/(pow(4,m-1)-1); 
if(m<k) 
sm=s; 

for(m=1;m<k+1;m++) 
printf("%18.10e",t[m]); 
printf("\n"); 
if(fabs(t[k]-sm)<eps) 

sm=t[k]; 
free(t); 
return(sm); 


return(ERROR_CODE); 


10、复合辛普生法求积分


 


#include "stdio.h" 

double composite_simpson(double(*f)(double),double a,double b,int n); 
double myfun(double x); 

void main() 

double(*fun)(double); 
double a,b,S4; 
int n; 

a=0; 
b=1; 
n=4; 
fun=myfun; 
S4=composite_simpson(fun,a,b,n); 
printf("\n积分值为:%f\n",S4); 




/******************************************************************** 
* 用复合辛普生法计算函数f(x)从a到b的积分值 
* 输入: f--函数f(x)的指针 
*       a--积分下限 
*       b--积分上限 
*       n--分段数 
* 输出: 返回值为f(x)从a点到b点的积分值 
*******************************************************************/ 
double composite_simpson(double(*f)(double),double a,double b,int n) 

double s,h,x; 
int i; 
printf("x\t\tf(x)\t\ts\n"); 
s=(*f)(a)-(*f)(b); 
h=(b-a)/(2*n); 
x=a; 
for(i=1;i<2*n;i+=2) 

x+=h; 
s+=4*(*f)(x); 
printf("%f\t%f\t%f\n",x,(*f)(x),s*h/3); 
x+=h; 
s+=2*(*f)(x); 
printf("%f\t%f\t%f\n",x,(*f)(x),s*h/3); 


   return(s*h/3); 



double myfun(double x) 

double y; 

y=4.0/(1+x*x); 

return(y); 



11、最小二乘法拟合


 



/*************************************************************** 
* 本算法用最小二乘法依据指定的M个基函数及N个已知数据进行曲线拟和 
* 输入: m--已知数据点的个数M 
*       f--M维基函数向量 
* n--已知数据点的个数N-1 
*       x--已知数据点第一坐标的N维列向量 
*       y--已知数据点第二坐标的N维列向量 
*       a--无用 
* 输出: 函数返回值为曲线拟和的均方误差 
*       a为用基函数进行曲线拟和的系数, 
*       即a[0]f[0]+a[1]f[1]+...+a[M]f[M]. 
****************************************************************/ 
double mini_product(int m,double(*f[M])(double),int n,double x[N], 
double y[N],double a[M]) 

double e,ff,b[M][M],c[M][1]; 
int i,j,k; 

for(j=0;j<m;j++)       /*计算最小均方逼近矩阵及常向量*/ 

for(k=0;k<m;k++) 

b[j][k]=0.0; 
for(i=0;i<n;i++) 
b[j][k]+=(*f[j])(x)*(*f[k])(x); 

c[j][0]=0.0; 
for(i=0;i<n;i++) 
c[j][0]+=(*f[j])(x)*y

gaussian_elimination(m,b,1,c);   /*求拟和系数*/ 
for(i=0;i<m;i++) 
a=c[0]; 
e=0.0; 
for(i=0;i<n;i++)   /*计算均方误差*/ 

ff=0.0; 
for(j=0;j<m;j++) 
ff+=a[j]*(*f[j])(x); 
e+=(y-ff)*(y-ff); 

return(e); 






/************************************************************************* 
* 高斯列主元素消去法求解矩阵方程AX=B,其中A是N*N的矩阵,B是N*M矩阵 
* 输入: n----方阵A的行数 
*       a----矩阵A 
*       m----矩阵B的列数 
*       b----矩阵B 
* 输出: det----矩阵A的行列式值 
*       a----A消元后的上三角矩阵 
*       b----矩阵方程的解X 
**************************************************************************/ 
double gaussian_elimination(int n,double a[M][M],int m,double b[M][1]) 

int i,j,k,mk; 
double det,mm,f; 
det = 1.0; 
for(k = 0;k<n-1;k++)  /*选主元并消元*/ 

mm=a[k][k]; 
mk = k; 
for(i=k+1;i<n;i++)   /*选择第K列主元素*/ 

if(fabs(mm)<fabs(a[k])) 

mm = a[k]; 
mk = i; 


if(fabs(mm)<EPS) 
return(0); 
if(mk!=k) /* 将第K列主元素换行到对角线上*/ 

for(j=k;j<n;j++) 

f = a[k][j]; 
a[k][j]=a[mk][j]; 
a[mk][j]=f; 

for(j=0;j<m;j++) 

f = b[k][j]; 
b[k][j]=b[mk][j]; 
b[mk][j]=f; 

det = -det; 

for(i=k+1;i<n;i++) /*将第K列对角线以下消元为零*/ 

mm = a[k]/a[k][k]; 
a[k]=0.0; 
for(j=k+1;j<n;j++) 
a[j]=a[j]-mm*a[k][j]; 
for(j=0;j<m;j++) 
b[j]=b[j]-mm*b[k][j]; 

det = det*a[k][k]; 

if(fabs(a[k][k])<EPS) 
return 0; 
det=det*a[k][k]; 
for(i=0;i<m;i++) /*回代求解*/ 

b[n-1]=b[n-1]/a[n-1][n-1]; 
for(j=n-2;j>=0;j--) 

for(k=j+1;k<n;k++) 
b[j]=b[j]-a[j][k]*b[k]
b[j]=b[j]/a[j][j]; 


return(det); 


12.埃特金插值法



/****************************************************** 
* 用埃特金插值法依据N个已知数据点计算函数值 
* 输入: n--已知数据点的个数N-1 
*       x--已知数据点第一坐标的N维列向量 
* y--已知数据点第二坐标的N维列向量 
* xx-插值点第一坐标 
*       eps--求解精度 
* 输出: 函数返回值所求插值点的第二坐标 
******************************************************/ 
double aitken(int n,double x[N],double y[N],double xx,double eps) 

double d[N]; 
int i,j; 

for(i=0;i<=n;i++) 
d=y
for(i=0;i<=n;i++) 

for(j=0;j<i;j++) 
d=(d*(x[j]-xx)-d[j]*(x-xx))/(x[j]-x); 
if(d-d[i-1]<eps) 
return(d); 



 

13、牛顿插值法




/****************************************************** 
* 用牛顿插值法依据N个已知数据点即使函数值 
* 输入: n--已知数据点的个数N-1 
*       x--已知数据点第一坐标的N维列向量 
* y--已知数据点第二坐标的N维列向量 
* xx-插值点第一坐标 
* 输出: 函数返回值所求插值点的第二坐标 
******************************************************/ 
double newton(int n,double x[N],double y[N],double xx) 

double d[N],b; 
int i,j; 

for(i=0;i<=n;i++) 
d=y
for(i=n-1;i>=0;i--) /*求差商*/ 
for(j=i+1;j<=n;j++) 

if(fabs(x-x[j])<EPS) 
return 0; 
d[j]=(d[j-1]-d[j])/(x-x[j]); 

b=d[n]; 
for(i=n-1;i>=0;i--) 
b=d+(xx-x)*b; 
return b; 



14、 拉格朗日插值法



/****************************************************** 
* 用拉格朗日插值法依据N个已知数据点即使函数值 
* 输入: n--已知数据点的个数N-1 
*       x--已知数据点第一坐标的N维列向量 
* y--已知数据点第二坐标的N维列向量 
* xx-插值点第一坐标 
* 输出: 函数返回值所求插值点的第二坐标 
******************************************************/ 
double lagrange(int n,double x[N],double y[N],double xx) 

double p,yy; 
int i,j; 
yy = 0.0; 
for(i=0;i<=n;i++) 

p=1.0; 
for(j=0;j<=n;j++) 
if(i!=j) 

if(fabs(x-x[j])<EPS) 
return 0; 
p=p*(xx-x[j])/(x-x[j]); 

yy=yy+p*y

return(yy); 


15、 逆矩阵法求解矩阵方程AX=B





/************************************************************************* 
* 逆矩阵法求解矩阵方程AX=B,其中A是N*N的矩阵,B是N*N矩阵 
* 输入: n----方阵A的行数 
*       a----矩阵A 
*       m----矩阵B的列数 
*       b----矩阵B 
* 输出: det----矩阵A的行列式值 
*       a----A的逆矩阵 
*       b----矩阵方程的解X 
**************************************************************************/ 
double gaussian_jodan_solve(int n,double a[N][N],int m,double b[N][M]) 

double det,f[N]; 
int i,j,k; 

det = gaussian_jodan(n,a); 
if(det==0) return (0); 
for(k=0;k<m;k++) /*做矩阵乘法AB*/ 

for(i=0;i<n;i++) 

f=0.0; 
for(j=0;j<n;j++) 
f=f+a[j]*b[j][k]; 

for(i=0;i<n;i++) 
b[k]=f

return(det); 




调用到的求逆矩阵的子函数 

/************************************************************************* 
* 高斯--约当列主元素法求矩阵方程A的逆矩阵,其中A是N*N的矩阵 
* 输入: n----方阵A的行数 
*       a----矩阵A 
* 输出: det--A的行列式的值 
*       a----A的逆矩阵 
**************************************************************************/ 
double gaussian_jodan(int n,double a[N][N]) 

int i,j,k,mk; 
int p[N];  /*记录主行元素在原矩阵中的位置*/ 
double det,m,f; 

det = 1.0; 
for(k=0;k<n;k++) 

m=a[k][k];  /*选第K列主元素*/ 
mk=k; 
for(i=k+1;i<n;i++) 
if(fabs(m)<fabs(a[k])) 

m=a[k]; 
mk=i; 

if(fabs(m)<EPS) return(0); 
if(mk!=k) 

for(j=0;j<n;j++) /*将第K列主元素换行到主对角线上*/ 

f=a[k][j]; 
a[k][j]=a[mk][j]; 
a[mk][j]=f; 

p[k]=mk; 
det = -det; 

else 
p[k]=k; 
det=det*m; 
for(j=0;j<n;j++)  /*计算主行元素*/ 
if(j!=k) 
a[k][j]=a[k][j]/a[k][k]; 
a[k][k]=1.0/a[k][k]; 
for(i=0;i<n;i++) /*消元*/ 

if(i!=k) 

for(j=0;j<n;j++) 
if(j!=k) 
a[j]=a[j]-a[k]*a[k][j]; 
a[k]=-a[k]*a[k][k]; 



for(k=n-2;k>=0;k--) /*按主行在原矩阵中的位置交换列*/ 

if(p[k]!=k) 
for(i=0;i<n;i++) 

f=a[k]; 
a[k]=a[p[k]]; 
a[p[k]]=f; 


return(det); 



16、高斯列主元素消去法求解矩阵方程




/************************************************************************* 
* 高斯列主元素消去法求解矩阵方程AX=B,其中A是N*N的矩阵,B是N*M矩阵 
* 输入: n----方阵A的行数 
*       a----矩阵A 
*       m----矩阵B的列数 
*       b----矩阵B 
* 输出: det----矩阵A的行列式值 
*       a----A消元后的上三角矩阵 
*       b----矩阵方程的解X 
**************************************************************************/ 
double gaussian_elimination(int n,double a[N][N],int m,double b[N][M]) 

int i,j,k,mk; 
double det,mm,f; 
det = 1.0; 
for(k = 0;k<n-1;k++)  /*选主元并消元*/ 

mm=a[k][k]; 
mk = k; 
for(i=k+1;i<n;i++)   /*选择第K列主元素*/ 

if(fabs(mm)<fabs(a[k])) 

mm = a[k]; 
mk = i; 


if(fabs(mm)<EPS) 
return(0); 
if(mk!=k) /* 将第K列主元素换行到对角线上*/ 

for(j=k;j<n;j++) 

f = a[k][j]; 
a[k][j]=a[mk][j]; 
a[mk][j]=f; 

for(j=0;j<m;j++) 

f = b[k][j]; 
b[k][j]=b[mk][j]; 
b[mk][j]=f; 

det = -det; 

for(i=k+1;i<n;i++) /*将第K列对角线以下消元为零*/ 

mm = a[k]/a[k][k]; 
a[k]=0.0; 
for(j=k+1;j<n;j++) 
a[j]=a[j]-mm*a[k][j]; 
for(j=0;j<m;j++) 
b[j]=b[j]-mm*b[k][j]; 

det = det*a[k][k]; 

if(fabs(a[k][k])<EPS) 
return 0; 
det=det*a[k][k]; 
for(i=0;i<m;i++) /*回代求解*/ 

b[n-1]=b[n-1]/a[n-1][n-1]; 
for(j=n-2;j>=0;j--) 

for(k=j+1;k<n;k++) 
b[j]=b[j]-a[j][k]*b[k]
b[j]=b[j]/a[j][j]; 


return(det); 



17、任意多边形的面积计算(包括凹多边形的)

任意多边形的面积计算(包括凹多边形的,以及画多边形时线相交了的判别),最好提供相关资料,越详细越好,谢谢   
---------------------------------------------------------------   
我们都知道已知A(x1,y1)B(x2,y2)C(x3,y3)三点的面积公式为   
                      &brvbar;x1    x2    x3  &brvbar;   
S(A,B,C)  =       &brvbar;y1    y2    y3  &brvbar;  *  0.5    (当三点为逆时针时为正,顺时针则为负的)   
                      &brvbar;1      1      1  &brvbar;   

对多边形A1A2A3、、、An(顺或逆时针都可以),设平面上有任意的一点P,则有:   
  S(A1,A2,A3,、、、,An)   
  =  abs(S(P,A1,A2)  +  S(P,A2,A3)+、、、+S(P,An,A1))   

P是可以取任意的一点,用(0,0)就可以了。   
这种方法对凸和凹多边形都适用。   

还有一个方法:   
任意一个简单多边形,当它的各个顶点位于网格的结点上时,它的面积数S=b/2+c+1   
其中:b代表该多边形边界上的网络结点数目   
          c代表该多边形内的网络结点数目  

所以把整个图形以象素为单位可以把整个图形分成若干个部分,计算该图形边界上的点b和内部的点c就得到面积数S了,然后把S乘以一个象素的面积就是所求的面积了。 


      非常感谢“山城棒棒儿的MATLAB&FPGA世界 ”,从中获益匪浅,有时间也会整理一些相关的数值分析的代码,共享给急切需要,没有目标的网友同行们!希望能在您能获多获少都会有所收获,那将是我最幸福的事!



转自 http://www.cnblogs.com/haohello/archive/2007/04/26/727744.html

  • 4
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值