bzoj3143: [Hnoi2013]游走(期望+贪心)

[Hnoi2013]游走

Time Limit: 10 Sec
Memory Limit: 128 MB

Description

一个无向连通图,顶点从1编号到 N N ,边从1编号到M
Z Z 在该图上进行随机游走,初始时小Z在1号顶点,每一步小 Z Z 以相等的概率随机选择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z到达 N N 号顶点时游走结束,总分为所有获得的分数之和。
现在,请你对这M条边进行编号,使得小 Z Z 获得的总分的期望值最小。

Input

第一行是正整数N M M ,分别表示该图的顶点数 和边数,接下来M行每行是整数 uv u , v ( 1u 1 ≤ u , vN v ≤ N ),表示顶点 u u 与顶点v之间存在一条边。 输入保证30%的数据满足 N10 N ≤ 10 ,100%的数据满足 2N500 2 ≤ N ≤ 500 且是一个无向简单连通图。

Output

仅包含一个实数,表示最小的期望值,保留3位小数。

Sample Input
3  3                
2  3
1  2
1  3
Sample Output
3.333

   
   
   
   
   
   
   

解:

不会这道题估计是因为不会期望概率,woc,这玩意儿真的巨难。
首先我们会发现一个很简单的贪心结论:把边走过的期望从小到大排序,最小的乘上 m m ,次小的乘上m1,以此类推,得到的就是最优解。显而易见。
然后我们会发现边走过的期望次数是很难求的,而且边是没有个数限制的,我们只能考虑点。(用 di d i 表示第 i i 号点的度数,用fi表示第 i i 号点的期望经过次数)
然后有一个点的经过次数转化为边的经过次数的式子:fxdx+fydy。因为每条边只能从它左右两个点经过,也是很显然的。
最后我们只需要考虑每个点的经过次数, fi=Σi­>jfjdj(1i,jn­1) f i = Σ i ­ − > j f j d j ( 1 ≤ i , j ≤ n ­ − 1 ) 。还是同一个思想,一个点只能从它相邻的点转移过来。
然后由于1号点为出发点,所以还要加一个1, n n 号点由于走到会停止,所以fn永远会是0。
n-1个方程,n-1个未知数,而且数据范围也允许我们使用高斯消元,那么这道题就完成了。
贴波代码(高斯消元要有独特的卡常技巧,记得有0就要 continue c o n t i n u e ,否则会巨慢):

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct lxy{
    int to,next;
}b[250005];
int n,m,cnt,x,y;
int head[505],deg[505];;
double a[505][505];
double ans[500005];
double ret;
double eps=1e-13;

void gs()
{
    for(int i=1;i<n;i++)
    {
        double mmm=0;int pos;
        for(int j=i;j<n;j++)
          if(fabs(a[j][i])>mmm)
            pos=j,mmm=a[j][i];
        for(int j=0;j<n;j++)
          swap(a[i][j],a[pos][j]);
        mmm=a[i][i];
        for(int j=n-1;j>=i;j--)
          a[i][j]=a[i][j]/mmm;
        a[i][0]=a[i][0]/mmm;
        for(int j=1;j<n;j++)
          if(j!=i)
          {
            mmm=a[j][i];
            if(fabs(mmm)<eps) continue;
            for(int k=n-1;k>=i;k--)
              a[j][k]=a[j][k]-a[i][k]*mmm;
            a[j][0]=a[j][0]-a[i][0]*mmm;
          }
    }
}

void add(int op,int ed)
{
    b[++cnt].next=head[op];
    b[cnt].to=ed;
    head[op]=cnt;
}

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) head[i]=-1;
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d",&x,&y);
        add(x,y);add(y,x);
    }
    cnt=0;
    for(int j=1;j<=n;j++)
      for(int i=head[j];i!=-1;i=b[i].next)
        deg[j]++;
    a[1][0]=-1;
    for(int j=1;j<n;j++)
    {
      for(int i=head[j];i!=-1;i=b[i].next)
        if(b[i].to!=n)
          a[j][b[i].to]=(double) 1/deg[b[i].to];
      a[j][j]=-1;
    }
    gs();
    double t;
    for(int j=1;j<=n;j++)
      for(int i=head[j];i!=-1;i=b[i].next)
        {
          t=a[j][0]/deg[j]+a[b[i].to][0]/deg[b[i].to];
          ans[++cnt]=t;
        }
    sort(ans+1,ans+1+2*m);
    int p=m;
    for(int i=1;i<=2*m;i=i+2)
      ret+=ans[i]*p,p--;
    printf("%.3f",ret);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值