- 博客(7)
- 收藏
- 关注
原创 pip install pyecharts报错ERROR: jupyter-echarts-pypkg 0.1.2 requires pyecharts-jupyter-installer==0.0.
执行最后报错:pip list中有包,但import错误解决方法:pip install pyecharts-jupyter-installerfrompyechartsimportBar测试成功!
2020-04-23 20:18:39 2651
原创 学习(三)决策树/集成学习
一、决策树1、决策树就是一个类似流程图的树型结构,其中树的每个内部结点代表对一个属性(取值)的测试,其分支就代表测试的每个结果;而树的每个叶结点就代表一个类别。树的最高层结点就是根结点。2、方法缺点:1)对连续性的字段比较难预测。2)对有时间顺序的数据,需要很多预处理的工作。3)当类别太多时,错误可能就会增加的比较快。4)一般的算法分类的时候,只是根据一个字段来分类。3、4、基尼值越小,纯度越大。...
2018-05-10 10:58:18 479
原创 学习(二)
一、LRLR模型的表达式为:一个事件发生的几率(odds)是指该事件发生的概率与该事件不发生的概率的比值。如果事件发生的概率是p,那么该事件的几率为p/(1-p) ,该事件的对数几率(log odds)或logit函数是:对LR而言,根据模型表达式可以得到:二、softmaxSoftmax Regression是Logistic回归的推广,Logistic回归是处理二分类问题的,而Softmax ...
2018-05-03 21:54:10 184
翻译 梯度下降
小白白一个,总结摘要,欢迎指正。一. 批梯度下降算法 梯度下降原理:将函数比作一座山,我们站在某个山坡上,往四周看,从哪个方向向下走一小步,能够下降的最快。可以用以下式子表示一个样本: θ表示X映射成Y的权重,x表示一次特征。假设x0=1,上式就可以写成:分别使用x(j),y(j)表示第J个样本。我们计算的目的是为了让计算的值无限接近真实值y,即代价函数可以采用LMS算法要获取J(θ)最小,即对J...
2018-04-27 21:36:07 188
翻译 逻辑回归
一、概述logistic回归与多重线性回归实际上有很多相同之处,最大的区别就在于他们的因变量不同,其他的基本都差不多,正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalized linear model)。这一家族中的模型形式基本上都差不多,不同的就是因变量不同,如果是连续的,就是多重线性回归,如果是二项分布,就是logistic回归,如果是poisson分布,就是
2018-04-27 21:05:34 283
翻译 线性回归
线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
2018-04-27 21:02:45 715
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人