leetcode 198House Robber(简单动态规划解法)

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

代码如下:

public class Solution {
    public int rob(int[] nums) {  
    if(nums.length==0) return 0;
    if(nums.length==1) return nums[0];

    //Initialize an arrays to store the money
	int[] mark = new int[nums.length];

    //We can infer the formula from problem:mark[i]=max(num[i]+mark[i-2],mark[i-1])
    //so initialize two nums at first.
	mark[0] = nums[0];
	mark[1] = Math.max(nums[0], nums[1]);

    //Using Dynamic Programming to mark the max money in loop.
	for(int i=2;i<nums.length;i++){
		mark[i] = Math.max(nums[i]+mark[i-2], mark[i-1]);
	}
	return mark[nums.length-1];
}
}

迭代的解法,空间复杂度降为O(1)代码如下:

class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];
        if (nums.size() == 2) return max(nums[0], nums[1]);
        int prev1 = nums[1], prev2 = nums[0], prev1_no_rob = nums[0], cur;
        for (int i = 2; i < nums.size(); i++)
        {
            cur = max(prev1_no_rob + nums[i], max(prev1, prev2 + nums[i]));
            prev1_no_rob = max(prev2, prev1);
            prev2 = prev1;
            prev1 = cur;
        }
        return cur;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值