完整项目代码:https://github.com/SPECTRELWF/pytorch-cnn-study
个人主页:liuweifeng.top:8090
ResNet网络结构

ResNet是何恺明大神在CVPR2016的工作,也拿到了当年的最佳论文。是为了解决深层网络的梯度消失的问题,引入了残差块连接。
数据集描述
数据集使用的是来自格物钛的一个公开数据集,数据集下载地址:https://gas.graviti.cn/dataset/data-decorators/COVID_CT,里面包含715张图片,包含确诊和未确诊的,比例大概一比一,图像是处理过的CT图像。

网络结构
使用pytorch的torchvision里面提供的resnet50(),未使用预训练模型。在后面再加上一层全连接层:
# !/usr/bin/python3
# -*- coding:utf-8 -*-
# Author:WeiFeng Liu
# @Time: 2021/11/9 下午4:57
import torchvision
import torch.nn as nn
class my_resnet50(nn.Module):
def __init__(self):
super(my_resnet50, self).__init__()
self.backbone = torchvision.models.resnet50(pretrained=False)
self.fc2 = nn.Linear(1000,512)
self.fc3 = nn.Linear(512,2)
def forward(self,x):
x = self.backbone(x)
x = self.fc2(x)
x = self.fc3(x)
return x
train:
# !/usr/bin/python3
# -*- coding:utf-8 -*-
# Author:WeiFeng Liu
# @Time: 2021/11/9 下午4:48
import torch
import torchvision
import torchvision.transforms as transforms
import torchvision.models as models
import torch.utils.data as data
from torch.utils.data import DataLoader
from dataload.COVID_Dataload import COVID
from resnet50 import my_resnet50
from torch import nn,optim
transforms = transforms.Compose([
transforms.Resize([

这篇博客介绍了使用PyTorch实现的ResNet50网络结构,针对COVID-19 CT图像进行诊断,解决深层网络梯度消失问题,并展示了训练和测试流程,以及如何加载预训练模型进行预测。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



