pytorch:ResNet50做新冠肺炎CT照片是否确诊分类

这篇博客介绍了使用PyTorch实现的ResNet50网络结构,针对COVID-19 CT图像进行诊断,解决深层网络梯度消失问题,并展示了训练和测试流程,以及如何加载预训练模型进行预测。

完整项目代码:https://github.com/SPECTRELWF/pytorch-cnn-study
个人主页:liuweifeng.top:8090

ResNet网络结构

在这里插入图片描述

ResNet是何恺明大神在CVPR2016的工作,也拿到了当年的最佳论文。是为了解决深层网络的梯度消失的问题,引入了残差块连接。

数据集描述

数据集使用的是来自格物钛的一个公开数据集,数据集下载地址:https://gas.graviti.cn/dataset/data-decorators/COVID_CT,里面包含715张图片,包含确诊和未确诊的,比例大概一比一,图像是处理过的CT图像。
在这里插入图片描述

网络结构

使用pytorch的torchvision里面提供的resnet50(),未使用预训练模型。在后面再加上一层全连接层:

# !/usr/bin/python3
# -*- coding:utf-8 -*-
# Author:WeiFeng Liu
# @Time: 2021/11/9 下午4:57

import torchvision
import torch.nn as nn



class my_resnet50(nn.Module):
    def __init__(self):
        super(my_resnet50, self).__init__()
        self.backbone = torchvision.models.resnet50(pretrained=False)
        self.fc2 = nn.Linear(1000,512)
        self.fc3 = nn.Linear(512,2)

    def forward(self,x):
        x = self.backbone(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x

train:

# !/usr/bin/python3
# -*- coding:utf-8 -*-
# Author:WeiFeng Liu
# @Time: 2021/11/9 下午4:48

import torch
import torchvision
import torchvision.transforms as transforms
import torchvision.models as models
import torch.utils.data as data
from torch.utils.data import DataLoader
from dataload.COVID_Dataload import COVID
from resnet50 import my_resnet50
from torch import nn,optim

transforms = transforms.Compose([
    transforms.Resize([
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值