语义分割损失函数系列(3):Dice损失

16 篇文章 0 订阅
12 篇文章 1 订阅

Dice损失在医学图像分割任务中使用得极多,用于度量两个集合得相似性,dice系数的定义如下:
D i c e C o e f f i c i e n t = 2 ∣ A ∩ B ∣ ∣ A ∣ + ∣ B ∣ Dice Coefficient = \frac{2|A\cap B|}{|A| + |B|} DiceCoefficient=A+B2AB

Dice 损失等于1-dice系数

D i c e l o s s = 1 − D i c e C o e f f i c i e n t Dice loss = 1-Dice Coefficient Diceloss=1DiceCoefficient

Pytorch实现的dice损失代码如下:

'''
Author: weifeng liu
Date: 2022-04-13 22:44:33
LastEditTime: 2022-04-14 14:29:34
LastEditors: Please set LastEditors
Description: 打开koroFileHeader查看配置 进行设置: https://github.com/OBKoro1/koro1FileHeader/wiki/%E9%85%8D%E7%BD%AE
FilePath: /BIBM-project/segmentation_pipeline/loss/dice.py
'''
import numpy
import torch
import torch.nn as nn
import torch.nn.functional as F

class DiceLoss(nn.Module):
    def __init__(self, weight=None, size_average=True):
        super(DiceLoss, self).__init__()

    def forward(self, inputs, targets, smooth=1):
        """
        Args:
            inputs (tensor): model outputs
            targets (tensor): image labels
            smooth (int, optional): smooth factor. Defaults to 1.

        Returns:
            loss 
        """
        #comment out if your model contains a sigmoid or equivalent activation layer
        inputs = F.sigmoid(inputs)       
        
        #flatten label and prediction tensors
        inputs = inputs.view(-1)
        targets = targets.view(-1)
        
        intersection = (inputs * targets).sum()                            
        dice = (2.*intersection + smooth)/(inputs.sum() + targets.sum() + smooth)  
        
        return 1 - dice
  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于语义分割任务,常用的损失函数是交叉熵损失函数。然而,使用传统的交叉熵损失函数存在一些问题,如类别不平衡和边界模糊等。因此,有一些改进的方法可以提高语义分割的精度和性能。 1. 权重交叉熵损失函数(Weighted Cross Entropy Loss):通过赋予不同类别的像素不同的权重,可以解决类别不平衡问题。通常,权重可以根据每个类别在训练集中的频率进行计算,使得少数类别的像素有更大的权重。 2. 评估指标损失函数(IoU Loss):交叉熵损失函数只关注像素级别的分类准确性,而忽略了目标物体的边界准确性。为了解决这个问题,可以使用评估指标损失函数(如Intersection over Union,简称IoU)来度量预测结果和真实标签之间的重叠程度。通过最大化IoU值,可以提高边界的精度。 3. 多尺度损失函数(Multi-scale Loss):语义分割任务通常需要同时考虑局部和全局信息。为了综合考虑不同尺度上的特征,可以设计多尺度损失函数。一种常见的方法是使用多个尺度的预测结果,并分别计算它们的损失函数,然后将损失函数进行加权求和。 4. 上下文注意力损失函数(Context Attention Loss):为了提高语义分割的精度,可以引入上下文信息。一种常见的方法是使用注意力机制,将图像的上下文信息融合到特征表示中。通过设计上下文注意力损失函数,可以引导模型更好地利用上下文信息进行语义分割。 这些改进的损失函数可以结合使用,也可以根据具体任务的特点选择适合的方法。同时,还可以通过数据增强、模型结构优化等其他方法进一步提高语义分割的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值