mysql读数据库和插入数据库乱码问题

本文介绍了一个Java实用类,该类提供了解决数据库中中文字符集转换问题的方法。通过两个核心函数latin1ToGBK和GBKToLatin1,实现了在读取和写入数据库时中文的正确处理。

解决办法:

 

建立一个专门用于编码的类:

package util;
import java.io.UnsupportedEncodingException;
//解决中文问题
public class EncodingUtil {
 
 //从数据库取出用
 public static String latin1ToGBK(String str)
 {
  try {
    String temp_p = str;
    byte[] temp_t = temp_p.getBytes("ISO-8859-1");
    String temp = new String(temp_t,"GBK");
    return temp;
  }catch (UnsupportedEncodingException ex) {
   System.out.println(ex);
   return "";
  }

 }

 //存入中文数据时用
 public static String GBKToLatin1(String str)
 {
  if(str==null)
  {
   str="";
  }
  else{
   try{
    str=new String(str.getBytes("GBK"),"ISO-8859-1");
   }
   catch(Exception ex){
    ex.printStackTrace();
   }
  }
  return str;
 }


}

 

 

读数据库时使用:review=EncodingUtil.latin1ToGBK(review);

插入数据库时使用:noun=EncodingUtil.GBKToLatin1(noun);

即可解决

内容概要:本文介绍了利用Matlab代码实现处理IMU、GPS传感器数据的多种姿态解算算法,重点包括卡尔曼滤波扩展卡尔曼滤波等技术,旨在提升导航系统的精度与稳定性。通过对传感器数据进行融合与滤波处理,有效解决了惯性导航系统中存在的累积误差问题,提高了动态环境下的姿态估计准确性。文章还提供了完整的算法实现流程仿真验证,展示了不同滤波方法在实际应用场景中的性能对比。; 适合人群:具备一定Matlab编程基础,从事导航、控制、机器人或自动驾驶等相关领域研究的科研人员及工程技术人员,尤其适合研究生及以上学历或有相关项目经验的研发人员。; 使用场景及目标:①应用于无人机、无人车、机器人等自主导航系统中的姿态估计;②用于教学与科研中对滤波算法的理解与改进;③帮助开发者掌握IMU【处理IMU、GPS传感器】现了多种姿态解算算法,如卡尔曼滤波、扩展卡尔曼滤波等,以提高导航系统的精度稳定性(Matlab代码实现)/GPS融合算法的设计思路与实现技巧,提升系统鲁棒性与定位精度。; 阅建议:建议者结合提供的Matlab代码进行实践操作,逐步调试并理解各算法模块的作用,重点关注传感器数据预处理、状态方程构建、噪声协方差调节及滤波结果分析等关键环节,以达到深入掌握姿态解算核心技术的目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值