把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。
输入
每个用例包含二个整数M和N。0<=m<=10,1<=n<=10。
样例输入
7 3
样例输出
8
/**
* 计算放苹果方法数目
- 输入值非法时返回-1
- 1 <= m,n <= 10
- @param m 苹果数目
- @param n 盘子数目数
- @return 放置方法总数
*
*/
public static int count(int m, int n)
输入描述:
输入两个int整数
输出描述:
输出结果,int型
输入例子:
7 3
输出例子:
8
解析:
#include <iostream>
using namespace std;
/* 解题分析:
设f(m,n) 为m个苹果,n个盘子的放法数目,则先对n作讨论,
当n>m:必定有n-m个盘子永远空着,去掉它们对摆放苹果方法数目不产生影响。即if(n>m) f(m,n) = f(m,m)
当n<=m:不同的放法可以分成两类:
1、有至少一个盘子空着,即相当于f(m,n) = f(m,n-1);
2、所有盘子都有苹果,相当于可以从每个盘子中拿掉一个苹果,不影响不同放法的数目,即f(m,n) = f(m-n,n).
而总的放苹果的放法数目等于两者的和,即 f(m,n) =f(m,n-1)+f(m-n,n)
递归出口条件说明:
当n=1时,所有苹果都必须放在一个盘子里,所以返回1;
当没有苹果可放时,定义为1种放法;
递归的两条路,第一条n会逐渐减少,终会到达出口n==1;
第二条m会逐渐减少,因为n>m时,我们会return f(m,m)
所以终会到达出口m==0.
*/
int func(int m,int n) //m个苹果放在n个盘子敏感词有几种方法
{
if(m==0||n==1) //因为我们总是让m>=n来求解的,所以m-n>=0,所以让m=0时候结束,如果改为m=1,
return 1; //则可能出现m-n=0的情况从而不能得到正确解
if(n>m)
return func(m,m);
else
return func(m,n-1)+func(m-n,n);
}
int main(){
int m, n;
while (cin >> m >> n){
if (m < 0 || m > 10 || n < 0 || n > 10) continue;
cout << func(m, n) << endl;
}
return 0;
}