变态跳台阶

题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:
f(1) = 1
f(2) = f(2-1) + f(2-2) //f(2-2) 表示2阶一次跳2阶的次数。
f(3) = f(3-1) + f(3-2) + f(3-3)

f(n) = f(n-1) + f(n-2) + f(n-3) + … + f(n-(n-1)) + f(n-n)

说明:
1)这里的f(n) 代表的是n个台阶有一次1,2,…n阶的 跳法数。
2)n = 1时,只有1种跳法,f(1) = 1
3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)
4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,

  那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3) 

  因此结论是f(3) = f(3-1)+f(3-2)+f(3-3) 

5) n = n时,会有n中跳的方式,1阶、2阶…n阶,得出结论:

  f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) =>

f(0) + f(1) + f(2) + f(3) + … + f(n-1)

6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:

  f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) =

f(0) + f(1) + f(2) + f(3) + … + f(n-2)

  f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) +

f(n-1) = f(n-1) + f(n-1)

  可以得出: 

  f(n) = 2*f(n-1) 

7) 得出最终结论,在n阶台阶,一次有1、2、…n阶的跳的方式时,总得跳法为:

            | 1       ,(n=0 )  
     f(n) = | 1       ,(n=1 ) 
            | 2*f(n-1),(n>=2)
class Solution {
public:
    int jumpFloorII(int number) {
         if(number==0)
              return 0;
         if(number==1)
               return 1;   
         return 2*jumpFloorII(number-1);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值