经典动态规划
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?(子向量的长度至少是1)
class Solution {
public:
int FindGreatestSumOfSubArray(vector<int> array)
{
int sum = INT_MIN;
vector<int>dp(array.size()+1);
dp[0] = array[0];//边界值
for(int i=1;i<array.size();++i)
{
dp[i] = max(array[i],dp[i-1]+array[i]);//状态方程
sum = max(dp[i],sum);
}
return sum;
}
};