机器学习
文章平均质量分 82
夜不能寐
这个作者很懒,什么都没留下…
展开
-
CS229 Lecture notes
监督学习(Supervised learning)咱们先来聊几个使用监督学习来解决问题的实例。假如咱们有一个数据集,里面的数据是俄勒冈州波特兰市的 47 套房屋的面积和价格:这些数据来投个图吧:这里要先规范一下符号和含义,这些符号以后还要用到,咱们假设 x(i)表示 “输入的” 变量值(在这个例子中就是房屋面积),也可以叫做输入特征;然后咱们用 y(i) 来转载 2017-08-23 09:43:59 · 1030 阅读 · 0 评论 -
机器学习之二 生成学习算法
Part IV生成学习算法,Generative Learning algorithms目前为止,我们讲过的学习算法的模型都是p (y|x;θ),也就是给定 x 下的 y 的条件分布,以 θ 为参数。例如,逻辑回归中就是以 hθ(x) = g(θT x) 作为 p (y|x;θ) 的模型,这里的 g 是一个 S型函数(sigmoid function)。接下来,咱们要讲一下一种转载 2017-08-23 09:51:52 · 524 阅读 · 0 评论 -
机器学习之三 支持向量机
CS229 Lecture notes原作者:Andrew Ng(吴恩达)翻译:CycleUserPart V: 支持向量机(Support Vector Machines)本章的讲义主要讲述的是 支持向量机( Support Vector Machine ,缩写为 SVM) 学习算法。SVM 算得上是现有的最好的现成的(“off-the-shelf”)监督学习转载 2017-08-23 09:52:56 · 848 阅读 · 0 评论 -
对于小白机器学习的入门图解 tensorflow 简单入门图解
作者:地球的外星人君链接:https://www.zhihu.com/question/49909565/answer/207609620来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。机器学习相关的框架也很多,我这里选择了Keras,后端采用的Tensorflow 。那么理所当然的,会用到python来开发,没有python经验也莫慌,影转载 2017-08-27 20:48:05 · 3592 阅读 · 2 评论 -
机器学习 深度学习用到的数学基础知识 标量、向量、矩阵和张量
学习线性代数,会涉及以下几类数学概念:• 标量(scalar):一个标量就是一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多个数的数组)。我们用斜体表示标量。标量通常被赋予小写的变量名称。当我们介绍标量时,会明确它们是哪种类型的数。比如,在定义实数标量时,我们可能会说 ‘‘令 s ∈ R 表示一条线的斜率’’;在定义自然数标量时,我们可能会说 ‘‘令 n ∈转载 2017-09-03 17:17:55 · 1633 阅读 · 0 评论