设要显示圆的圆心在原点(0,0),半径为R,初始点的坐标为(0,R),顺时针生成八分之一圆,令:F(x,y)=x2+y2-R2
则圆的方程为:
F(x,y)=0 | (2-27) |
当点(x,y)在圆内时,则F(x,y)<0;
当点(x,y)在圆外时,则F(x,y)>0;
当点(x,y)在圆上时,则F(x,y)=0;
现以下图的AB弧为例,来说明正负画圆法(顺时针生成圆)。
假设当前点为Pi(xi,yi),取下一个点Pi+1(xi+1,yi+1)的原则是:
1、当F(xi,yi)≤0时:取xi+1= xi+1,yi+1= yi。即向右走一步,从圆内走向圆外。对应图(a)中的从Pi到Pi+1。
2、当F(xi,yi)>0时:取xi+1= xi,yi+1= yi-1。即向下走一步,从圆外走向圆内。对应图(b)中的从Pi到Pi+1。
由于向圆内或向圆外走取决于F(xi,yi)的正负,因此称为正负法。
下面分两种情况求出F(xi,yi)的递推公式:
(1) 当F(xi,yi)≤0时,向右走,取xi+1=xi+1,yi+1=yi,则
F(x
i+1,y
i+1)
|
=
F(x
i+1,y
i)
=(x i+1) 2+y i 2- R 2 =(x i 2+y i 2- R 2)+2x i+1 = F(x i,y i)+2x i+1 | (2-28) |
(2) 当F(xi,yi)>0时,向下走,取xi+1=xi,yi+1=yi-1,则
F(x
i+1,y
i+1)
|
=
F(x
i,y
i-1)
=x i 2+(y i-1) 2- R 2 =(x i 2+y i 2- R 2)-2y i+1 = F(x i,y i)-2y i+1 | (2-29) |
初始时,x=0,y=R,故
F(0,R)=(02+R2)-R2=0 | (2-30) |
公式(2-28)、(2-29)和(2-30)就构成正负画圆算法的核心。
给象素坐标(x,y)及F赋初始值后,进入循环画点;
画点后,根据F的符号进行F值的递推和下一个点的获取,直到x>y为止。
同前面介绍的一样,利用圆的八分对称性,循环一次,画八个点。
注意:初值不同、圆的生成方向不同时,当前点和下一个点的获取原则是不同的,见下图。
例如,初始点(R,0),逆时针生成圆,从图(b)可知:
若当前点Pi在圆内,则下一点Pi+1(xi,yi+1),即向上走一步;
若当前点Pi在圆外,则下一点Pi+1(xi-1,yi),即向左走一步;
(a) 顺时针生成圆 (b) 逆时针生成圆