好不容易写的一个模版~本来是想按照我们数据结构教程的trie树来写,但是他的实现我实在觉得太难
所以还是采用简化版的trie树

这个应该算是比较标准的trie树结构,但是他的插入实现起来不仅仅是插入本身的单词,可能还需要修改原来的数结构
比如说本身已经存在了bobwhite,现在添加bobwhq,就要在第二层的基础上继续扩展,bobwhite的位置也要重新定位,删除操作也是这样
可能还要上移某些单词,这个昨天试了很久,写出来的都不行。
而且对这种字典树的结构本身我的理解就很混乱。
简化版的trie树

以下这种实现方法是根据别人改编的,昨天被逼得没办法还是觉得简化版的,突然发现个牛人的写法和我的很相似(这着实还让我激动了下下),就边学习边改了,呵呵
它是根据杭电的一道题来写的,以下是我的代码:
http://acm.hdu.edu.cn/showproblem.php?pid=1247
#include<iostream>
#define keyNum 26
#define MaxN 50
struct trie{
    
struct trieNode{//trie结点的结构
    trieNode *link[keyNum];//下标为 'A' , 'B' , 'C' ,  , 'Z' 的指针数组
    int num[keyNum];//插入key的次数
    trieNode(){
        memset(num,
0,sizeof(num));
        memset(link,NULL,
sizeof(link));
        }

    
void init(){
        memset(link,NULL,
sizeof(link));
        memset(num,
0,sizeof(num));
    }

    }
;
    trieNode
* root;
    trie()
    
{
        root
=(trieNode*)malloc(sizeof(trieNode));//初始化时为root申请了空间
        root->init();
    }

    
bool Search(char *);
    
void Insert(char []);
    
void Delete(trieNode*);
}
;
bool trie::Search(char * x)
{
    
if(*x==0)return false;
    trieNode
* current=root;
    x
++;
    
while(*x){
        
if(current->link[*(x-1)-'a'])
            current
=current->link[*(x-1)-'a'];
        
else break;
        x
++;
    }

    
if(*x==0&&current->num[*(x-1)-'a'])
        
return true;
    
else return false;
}

void trie::Delete(trieNode* t)
{
    
int i;
    
for(i=0;i<keyNum;i++)
        
if(t->link[i])Delete(t->link[i]);
    memset(t
->num,0,sizeof(t->num));
    delete(t);
}

void trie::Insert(char x[])
{
    trieNode 
*current=root;
    
int i=1;
    
while(x[i]){
        
if(current->link[x[i-1]-'a']==NULL){
            current
->link[x[i-1]-'a']=(trieNode*)malloc(sizeof(trieNode));
            (current
->link[x[i-1]-'a'])->init();
        }

        current
=current->link[x[i-1]-'a'];
        i
++;
    }

    (current
->num[x[i-1]-'a'])++;
}

char c[ 50000 ][MaxN],tmp;
int main()
{
    trie a;
    
int i=0,j,num;
    
while(scanf("%s",c[i])!=EOF)
        a.Insert(c[i
++]);
    num
=i;
    
for(i=0;i<num;i++)
        
for(j=1;c[i][j];j++){
            tmp
=c[i][j];
            c[i][j]
=0;
            
if(a.Search(c[i])){
                c[i][j]
=tmp;
                
if(a.Search(&c[i][j])){
                    printf(
"%s ",c[i]);
                    
break;}

            }

            
else c[i][j]=tmp;
        }

    a.Delete(a.root);
    
return 0;
}