对角巷

欢迎来到对角巷,为了小白兔和艾泽拉斯

深度学习实战教程(3)--(TensorFlow)inception_v4模型跑Google Flower数据集

模型:slim框架下的Inception_v4模型 Inception_v4的Checkpoint:http://download.tensorflow.org/models/inception_v4_2016_09_09.tar.gz 数据集:google的flower数据集http:/...

2017-07-27 11:10:09

阅读数 16634

评论数 23

TensorFlow--tf.pack改为tf.stack

TensorFlow后面版本把tf.pack改为了tf.stack

2017-07-15 19:38:49

阅读数 5233

评论数 0

TensorFlow安装--(方法3)Anaconda方式下查看TensorFlow版本选择性安装(Windows10 64位CPU/GPU)

其它环节与通过Anaconda环境配置方式一样,就是在安装TensorFlow时不直接使用pip install --upgrade --ignore-installed tensorflow-gpu命令,而是根据需求选择TensorFlow版本安装。

2017-07-15 17:50:50

阅读数 7858

评论数 2

TensorFlow版本升级--之前通过Anaconda安装(Windows)

TensorFlow版本更新

2017-07-15 11:54:47

阅读数 8937

评论数 0

激活函数(Activation Functions)

神经网络结构的输出为所有输入的加权和,这导致整个神经网络是一个线性模型。如果将每一个神经元的输出通过一个非线性函数,那么整个神经网络的模型也就不再是线性的了,使得神经网络可以更好地解决较为复杂的问题。这个非线性函数也就是激活函数。

2017-07-09 13:27:12

阅读数 1720

评论数 0

TensorFlow学习笔记(10)--实现AlexNet

AlexNet的出现意义非常重大,它证明了CNN在复杂模型下的有效性,而且使用GPU使得训练在可接受的时间范围内得到结果

2017-06-05 19:19:22

阅读数 11855

评论数 3

TensorFlow学习笔记(9)--使用CNN做英文文本分类任务

文中代码是实现在TensorFlow下使用卷积神经网络(CNN)做英文文本的分类任务(本次是垃圾邮件的二分类任务),当然垃圾邮件分类是一种应用环境,模型方法也可以推广到其它应用场景,如电商商品好评差评分类、正负面新闻等。

2017-05-25 10:38:55

阅读数 11178

评论数 22

TensorFlow学习笔记(8)--网络模型的保存和读取

之前的笔记里实现了softmax回归分类、简单的含有一个隐层的神经网络、卷积神经网络等等,但是这些代码在训练完成之后就直接退出了,并没有将训练得到的模型保存下来方便下次直接使用。为了让训练结果可以复用,需要将训练好的神经网络模型持久化,这就是这篇笔记里要写的东西。TensorFlow提供了一个非常...

2017-03-16 11:23:53

阅读数 49302

评论数 23

TensorFlow学习笔记(7)--实现卷积神经网络(同(5),不同的程序风格)

实现卷积神经网络,MNIST数据集

2017-03-15 20:27:32

阅读数 20724

评论数 5

TensorFlow学习笔记(6)--GPU报错(cuDNN版本该升级了)

在跑TensorFlow学习笔记(5)–基于MNIST数据集的卷积神经网络 代码的时候,出现了GPU报错的情况,确切来说应该是cuDNN版本太低的问题,我之前装的是v5.0版的,所以现在是需要换个5.1的意思喽0.0,这里也顺便给出cuDNNv5.1版本下载地址,懒得申请就直接云盘拿吧

2017-03-09 10:52:11

阅读数 3319

评论数 0

TensorFlow学习笔记(5)--实现卷积神经网络(MNIST数据集)

这里使用TensorFlow实现一个简单的卷积神经网络,使用的是MNIST数据集。网络结构为:数据输入层--卷积层1--池化层1--卷积层2--池化层2--全连接层1--全连接层2(输出层),这是一个简单但非常有代表性的卷积神经网络。

2017-03-08 17:35:55

阅读数 8095

评论数 1

TensorFlow学习笔记(4)--实现多层感知机(MNIST数据集)

前面使用TensorFlow实现一个完整的Softmax Regression,并在MNIST数据及上取得了约92%的正确率。现在建含一个隐层的神经网络模型(多层感知机)。

2017-03-08 11:45:30

阅读数 3831

评论数 0

TensorFlow学习笔记(3)--实现Softmax逻辑回归识别手写数字(MNIST数据集)

基于MNIST数据集的 逻辑回归模型做十分类任务 没有隐含层的Softmax Regression只能直接从图像的像素点推断是哪个数字,而没有特征抽象的过程。多层神经网络依靠隐含层,则可以组合出高阶特征,比如横线、竖线、圆圈等,之后可以将这些高阶特征或者说组件再组合成数字,就能实现精准的匹配和分...

2017-03-06 22:15:24

阅读数 4031

评论数 0

TensorFlow学习笔记(2)--构造线性回归模型

先制作一些数据:import numpy as np import tensorflow as tf import matplotlib.pyplot as plt# 随机生成1000个点,围绕在y=0.1x+0.3的直线周围

2017-03-04 17:34:47

阅读数 2940

评论数 0

TensorFlow学习笔记(1)--TensorFlow简介,常用基本操作

要将深度学习更快且更便捷地应用于新的问题中,选择一款深度学习工具是必不可少的步骤。TensorFlow是谷歌于2015年11月9日正式开源的计算框架。TensorFlow计算框架可以很好地支持深度学习的各种算法。

2017-02-08 17:07:25

阅读数 15191

评论数 2

TensorFlow--SummaryWriter改为tf.summary.FileWriter

不推荐使用SummaryWriter ._ init_(来自tensorflow.python.training.summary_io),将在2016-11-30之后删除。 更新说明: 请切换到tf.summary.FileWriter接口和行为是相同的; 这只是一个重命名。

2017-02-08 14:07:42

阅读数 12004

评论数 2

TensorFlow--initialize_all_variables改为tf.global_variables_initializer

initialize_all_variables已被弃用,将在2017-03-02之后删除。 说明更新:使用tf.global_variables_initializer代替。

2017-02-08 14:00:50

阅读数 18828

评论数 11

TensorFlow安装--(方法2)Anaconda方式安装(Windows10 64位)

上一篇是通过pip方法安装,这里记录下另一种方法。这里简单写下cpu版安装,gpu版参考上篇先装好cuda和cuDNN在按下面方面安装。

2017-02-06 19:21:54

阅读数 32651

评论数 4

TensorFlow安装--(方法2)GPU环境配置部分(装CPU版跳过不用看)(Windows10 64位 )

之前写了一篇是在 ubuntu 14.04下装 TensorFlow,装的是cpu版本的,又试着装gpu的但是出现了很多蜜汁问题,担心把之前的caffe环境破坏了,既然现在官方支持Windows系统了,就试试在win10 64位下安装 TensorFlow。TensorFlow 有cpu和 gpu...

2017-02-06 16:35:03

阅读数 20827

评论数 2

TensorFlow安装--(方法1)系统自带Python,VirtualEnv方式安装(Ubuntu14.04 64位CPU)

TensorFlow基于 VirtualEnv 的安装环境:ubuntu14.04 64位;python2.7

2017-02-05 16:26:05

阅读数 6374

评论数 0

提示
确定要删除当前文章?
取消 删除