题意:
R∗C的鱼塘,R,C≤100,多次操作,每次操作两种类型
第一种为(a,b),(c,d),第二种为(x,y),第一种操作的两个减去,第二种操作的一个加上
定于元组严格小于为a<c,b<d.操作限制条件为,比如两次操作:
(a,b),(c,d),(x,y);(a′,b′),(c′,d′),(x′,y′);须保证(a,b)<(c,d)<(a′,b′)<(c′,d′)且(x,y)<(x′,y′)
不同类型的操作没有关系,求最大收益
分析:
赤果果的dp
考虑状态maxv[i][j][k]:=(1,1)到(i,j)选择k个格子的最大获利,minv[i][j][k]:=最小获利
转移先拷贝之前的状态
maxv[i][j][k]=max(maxv[i−1][j][k],maxv[i][j−1][k])
选择(i,j)这个格子的话,maxv[i][j][k]=max(maxv[i][j][k],maxv[i−1][j−1][k−1]+a[i][j])
minv转移同理
代码:
//
// Created by TaoSama on 2015-12-11
// Copyright (c) 2015 TaoSama. All rights reserved.
//
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>
using namespace std;
#define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl
const int N = 1e2 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;
int n, m, a[N][N];
int maxv[N][N][N], minv[N][N][N];
inline void getMax(int &x, int y) {
x = max(x, y);
}
inline void getMin(int &x, int y) {
x = min(x, y);
}
int main() {
#ifdef LOCAL
freopen("C:\\Users\\TaoSama\\Desktop\\in.txt", "r", stdin);
// freopen("C:\\Users\\TaoSama\\Desktop\\out.txt","w",stdout);
#endif
ios_base::sync_with_stdio(0);
int t; scanf("%d", &t);
while(t--) {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
scanf("%d", &a[i][j]);
memset(minv, 0x3f, sizeof minv);
memset(maxv, 0, sizeof maxv);
for(int i = 0; i <= n; ++i)
maxv[i][0][0] = minv[i][0][0] = 0;
for(int i = 0; i <= m; ++i)
maxv[0][i][0] = minv[0][i][0] = 0;
for(int i = 1; i <= n; ++i) {
for(int j = 1; j <= m; ++j) {
for(int k = 1; k <= min(n, m); ++k) {
getMin(minv[i][j][k], min(minv[i - 1][j][k], minv[i][j - 1][k]));
getMin(minv[i][j][k], minv[i - 1][j - 1][k - 1] + a[i][j]);
getMax(maxv[i][j][k], max(maxv[i - 1][j][k], maxv[i][j - 1][k]));
getMax(maxv[i][j][k], maxv[i - 1][j - 1][k - 1] + a[i][j]);
}
}
}
int ans = 0;
for(int i = 1; i <= min(n, m) >> 1; ++i)
getMax(ans, maxv[n][m][i] - minv[n][m][i << 1]);
printf("%d\n", ans);
}
return 0;
}