【Java 分数线】

世博会志愿者的选拔工作正在 A 市如火如荼的进行。为了选拔最合适的人才,A市对所有报名的选手进行了笔试,笔试分数达到面试分数线的选手方可进入面试。面试分数线根据计划录取人数的150%150%划定,即如果计划录取mm名志愿者,则面试分数线为排名第m×150%m×150%(向下取整)名的选手的分数,而最终进入面试的选手为笔试成绩不低于面试分数线的所有选手。

现在就请你编写程序划定面试分数线,并输出所有进入面试的选手的报名号和笔试成绩。

【输入】

第一行,两个整数n,m(5≤n≤5000,3≤m≤n)n,m(5≤n≤5000,3≤m≤n),中间用一个空格隔开,其中nn 表示报名参加笔试的选手总数,mm 表示计划录取的志愿者人数。输入数据保证m×150%m×150%向下取整后小于等于nn。

第二行到第 n+1n+1 行,每行包括两个整数,中间用一个空格隔开,分别是选手的报名号k(1000≤k≤9999)k(1000≤k≤9999)和该选手的笔试成绩s(1≤s≤100)s(1≤s≤100)。数据保证选手的报名号各不相同。

【输出】

第一行,有两个整数,用一个空格隔开,第一个整数表示面试分数线;第二个整数为进入面试的选手的实际人数。

从第二行开始,每行包含两个整数,中间用一个空格隔开,分别表示进入面试的选手的报名号和笔试成绩,按照笔试成绩从高到低输出,如果成绩相同,则按报名号由小到大的顺序输出。

注意:存入二维数组的下标。 以0作为标记进行选择

```Java

import java.util.Scanner;
public class Main2 {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int[][] a= new int[10005][103];
        int[] b = new int[104];
        int n = in.nextInt();
        int m = in.nextInt();
       int c  = (int)(m*1.5);
        int temp = 0, ss = 0;
        for (int i = 0; i < n; i++) {
            temp = in.nextInt();
            ss = in.nextInt();
            a[temp][ss]++;
            b[ss]++;
        }
        int t = 0;
        int k = 0;
        for (int i = 100; t < c; i--) {
            t+=b[i];
            k = i;
        }
        System.out.println(k+" "+t);
        for (int i = 100; i >= k; i--) {
            for (int j = 1000; j < 10000; j++) {
                if (a[j][i] != 0) {
                    System.out.println(j+" "+i);
                }
            }
        }
    }
}

```

### 创建和使用分数类 在 Java 中创建并使用分数类涉及定义一个能够执行基本算术操作以及提供合理化功能的 `Rational` 或者 `Fraction` 类。此类通常会重写来自 Object 的 toString 和 equals 方法来适应特定需求。 #### 定义 Rational 类 为了构建这样一个类,可以考虑如下属性: - **分子 (Numerator)**:代表分数线上方的部分。 - **分母 (Denominator)**:位于分数线下方;需要注意的是,在初始化时应确保分母不为零。 此外,还需要实现一些核心的方法以便于对分数进行有效的管理与计算[^1]。 ```java public class Rational { private int numerator; private int denominator; public Rational(int num, int den) { if(den == 0){ throw new ArithmeticException("Divide by zero"); } this.numerator = num; this.denominator = den; } @Override public String toString(){ return numerator + "/" + denominator; } // Override the equals method to compare two rational numbers. @Override public boolean equals(Object obj){ if(this == obj) return true; if(obj instanceof Rational other){ double valueThis = ((double)this.numerator)/this.denominator; double valueOther = ((double)other.getNumerator())/other.getDenominator(); return Math.abs(valueThis-valueOther)<1e-9; }else{ return false; } } // Getters and setters omitted for brevity } ``` 此代码片段展示了如何通过构造函数接收两个参数——分子和分母,并对其进行必要的验证以防止除以零的情况发生。同时实现了 `toString()` 方法使得当调用该实例作为字符串输出时能按照期望格式展示数值关系。对于 `equals()` 方法,则是比较两个有理数是否相等的一种方式,这里采用了比较浮点数近似值的方式来进行判断。 #### 执行四则运算 为了让这个类更加实用,还可以加入加法、减法、乘法和除法的支持。下面是一个简单的例子说明如何添加这些功能: ```java // Method definitions within the Rational class... /** * Adds another fraction with current one. */ public Rational add(Rational r){ int n = this.numerator*r.denominator + r.numerator*this.denominator; int d = this.denominator*r.denominator; return reduce(new Rational(n,d)); } private static Rational reduce(Rational rat){ int gcdValue = gcd(rat.numerator,rat.denominator); return new Rational( rat.numerator / gcdValue, rat.denominator / gcdValue ); } private static int gcd(int a,int b){ while(b!=0){ int temp=a%b;a=b;b=temp; } return a; } ``` 上述代码增加了 `add()` 方法用于两分数求和,并引入辅助性的私有静态成员函数 `reduce()` 来简化最终的结果至最简形式。另外还提供了最大公约数算法 (`gcd`) 辅助完成约分化简过程[^3]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值