题目描述
给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和为20。现在增加一个要求,即还需要输出该子序列的第一个和最后一个元素。
输入
测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( K<= 10000 ),第2行给出K个整数,中间用空格分隔,每个数的绝对值不超过100。当K为0时,输入结束,该用例不被处理。
输出
对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。
样例输入 Copy
5
-3 9 -2 5 -4
3
-2 -3 -1
0
样例输出 Copy
12 9 5
0 -2 -1
思路:难点在输出起始和结束的数字, 可以定义一个结构体,在每次求dp的时候顺便把起始位置和终止位置一起存进去
#include <iostream>
#include <bits/stdc++.h>
struct node{
int sum, start, endd;
};
using namespace std;
const int maxn = 10005;
int main(int argc, char** argv) {
int n, num[maxn];
node dp[maxn];
while(cin >> n){
if(!n) return 0;
for(int i = 1; i <= n; i++ ) cin >> num[i];
dp[1].sum = num[1];
dp[1].start = 1;
dp[1].endd = 1;
for(int i = 2; i <= n; i++){
if(num[i] + dp[i - 1].sum > num[i]){
dp[i].sum = dp[i - 1].sum + num[i];
dp[i].start = dp[i - 1].start;
dp[i].endd = i;
}else{
dp[i].sum = num[i];
dp[i].start = i, dp[i].endd = i;
}
}
// for(int i = 1; i <= n; i++){
// cout << dp[i].sum << " ";
// }
// cout << endl;
int maxnum = -105, pos = 1;
for(int i = 1; i <= n; i++){
if(dp[i].sum > maxnum){
pos = i;
maxnum = dp[i].sum;
}
}
if(maxnum < 0){
cout << 0 << " " << num[1] << " " << num[n] << endl;
}else{
cout << maxnum << " " << num[dp[pos].start] << " " << num[dp[pos].endd] << endl;
}
}
return 0;
}