问题 A: 最大连续子序列

题目描述

给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和为20。现在增加一个要求,即还需要输出该子序列的第一个和最后一个元素。

输入

测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( K<= 10000 ),第2行给出K个整数,中间用空格分隔,每个数的绝对值不超过100。当K为0时,输入结束,该用例不被处理。

输出

对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。

样例输入 Copy

5
-3 9 -2 5 -4
3
-2 -3 -1
0

样例输出 Copy

12 9 5
0 -2 -1

思路:难点在输出起始和结束的数字, 可以定义一个结构体,在每次求dp的时候顺便把起始位置和终止位置一起存进去 

#include <iostream>
#include <bits/stdc++.h> 
struct node{
	int sum, start, endd;
};
using namespace std;
const int maxn = 10005;
int main(int argc, char** argv) {
	int n, num[maxn];
	node dp[maxn];
	while(cin >> n){
		if(!n) return 0;
		for(int i = 1; i <= n; i++ ) cin >> num[i];
		dp[1].sum = num[1];
		dp[1].start = 1;
		dp[1].endd = 1;
		for(int i = 2; i <= n; i++){
			if(num[i] + dp[i - 1].sum > num[i]){
				dp[i].sum = dp[i - 1].sum + num[i];
				dp[i].start = dp[i - 1].start;
				dp[i].endd = i;
			}else{
				dp[i].sum = num[i];
				dp[i].start = i, dp[i].endd = i;
			}
		}
		
//		for(int i = 1; i <= n; i++){
//			cout << dp[i].sum << " ";
//		}
//		cout << endl;
		
		int maxnum = -105, pos = 1;
		for(int i = 1; i <= n; i++){
			if(dp[i].sum > maxnum){
				pos = i;
				maxnum = dp[i].sum;
			}
		}
		if(maxnum < 0){
			cout << 0 << " " << num[1] << " " << num[n] << endl;
		}else{
			cout << maxnum << " " << num[dp[pos].start] << " " << num[dp[pos].endd] << endl;
		}
		
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值