索引优化

      如果针对sql语句已经没啥可以优化的,那我们就要考虑加索引了。

      一、索引的概要:

        索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点。考虑如下情况,假设数据库中一个表有

10^6条记录,DBMS的页面大小为4K,并存储100条记录。如果没有索引,查询将对整个表进行扫描,最坏的情况下,如果所有

数据页都不在内存,需要读取10^4个页面,如果这10^4个页面在磁盘上随机分布,需要进行10^4次I/O,假设磁盘每次I/O时间为

10ms(忽略数据传输时间),则总共需要100s(但实际上要好很多很多)。如果对之建立B-Tree索引,则只需要进行log100(10^6)=3

次页面读取,最坏情况下耗时30ms。这就是索引带来的效果,很多时候,当你的应用程序进行SQL查询速度很慢时,应该想想是

否可以建索引。

     二、索引的分类:

注意:索引是在存储引擎中实现的,也就是说不同的存储引擎,会使用不同的索引。

MyISAMInnoDB存储引擎:只支持BTREE索引,也就是说默认使用BTREE,不能够更换。  

MEMORY/HEAP存储引擎:支持HASHBTREE索引。

 

分类:

索引我们分为四类来讲单列索引(普通索引,唯一索引,主键索引)、组合索引、全文索引、空间索引、


  2.1 单列索引:一个索引只包含单个列,但一个表中可以有多个单列索引。这里不要搞混淆了。

  2.2 普通索引:MySQL中基本索引类型,没有什么限制,允许在定义索引的列中插入重复值和空值,纯粹为了查询数据更快

                                一点。

        2.3  唯一索引:索引列中的值必须是唯一的,但是允许为空值

        2.4  主键索引:是一种特殊的唯一索引,不允许有空值。(主键约束,就是一个主键索引)

        2.5  组合索引:在表中的多个字段组合上创建的索引,只有在查询条件中使用了这些字段的左边字段时,索引才会被使用,

                                 使用组合索引时遵循最左前缀集合。例如,这里由id、name和age3个字段构成的索引,索引行中就按

                                 id/name/age的顺序存放,索引可以索引下面字段组合(id,name,age)、(id,name)或者(id)。如果要查询

                                 的字段不构成索引最左面的前缀,那么就不会是用索引,比如,age或者(name,age)组合就不会使用

                                 引查询


  2.6 全文索引全文索引,只能在CHAR,VARCHAR,TEXT类型字段上使用全文索引,介绍了要求,说说什么是全文索引,

                               就是在一堆文字中,通过其中的某个关键字等,就能找到该字段所属的记录行。这里说的是可能,因为全文

                                索引的使用涉及了很多细节,我们只需要知道这个大概意思。


   2.7 空间索引:空间索引是对空间数据类型的字段建立的索引,MySQL中的空间数据类型有四种,

                                GEOMETRYPOINTLINESTRINGPOLYGON。在创建空间索引时,使用SPATIAL关键字。要求,引

                                 擎为MyISAM,创建空间索引的列,必须将其声明NOT NULL

      

三、为什么说B+-treeB 树更适合实际应用中操作系统的文件索引和数据库索引?

 

1.B+树的磁盘读写代价更低

B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对于B树更小。如果把所有同一内部结点的关键字存放在

同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也

就降低了。

 

2. B+-tree的查询效率更加稳定

由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到

叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。
 

3.MySQL索引实现
  MyISAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。因此,MyISAM中索引检索的算法为首先按照

B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录。而在

InnoDB中,表数据文件本身就是按B+Tree组织的一个索引结构,这棵树的叶结点data域保存了完整的数据记录。

 

4.有可能造成索引失效的几种情况

   索引以最左前缀原则使用的~

    4.1  使用like关键字模糊查询时,% 放在前面索引不起作用,只有“%”不在第一个位置,

           索引才会生效(like '%'--索引不起作用)

    4.2  使用联合索引时,只有查询条件中使用了这些字段中的第一个字段,索引才会生效

  4.3  使用OR关键字的查询,查询语句的查询条件中只有OR关键字,且OR前后的两个条件中的列都是索引时,索引才会生

            效,否则索引不生效。

     4.4  尽量避免在where子句中使用!=<>操作符,否则引擎将放弃使用索引而进行全表扫描。

  4.5  对查询进行优化,应尽量避免全表扫描,首先应考虑在where以及order by涉及的列上建立索引。

  4.6  应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:

            select id from t where num/2=100  应改为:  select id from t where num=100*2


  4.7   尽量避免在where子句中对字段进行函数操作,将导致引擎放弃使用索引而进行全表扫描。

    4.8   不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

  4.9   并不是所有的索引对查询都有效,sql是根据表中的数据来进行查询优化的,当索引列有大量数据重复时,sql查询不会

             去利用索引,如一表中有字段sex,male,female几乎各占一半,那么即使在sex上建立了索引也对查询效率起不了作用。

  4.10   索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert update 的效率,因为 insert

                update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,

     若太多则应考虑一些不常使用到的列上建的索引是否有必要。

     4.11    尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,

                并会增加存储开销。这是因为引擎在处理查询和连接时会 逐个比较字符串中每一个字符,而对于数字型而言只需要比

                较一次就够了。

     4.12    mysql查询只使用一个索引,因此如果where子句中已经使用了索引的话,那么order by中的列是不会使用索引的。

     因此数据库默认排序可以符合要求的情况下不要使用排序操作,尽量不要包含多个列的排序,如果需要最好给这些列

                建复合索引。

     4.13    order by 索引 ,不起作用的问题(除了主键索引之外):

                1、 如果select 只查询索引字段,order by 索引字段会用到索引,要不然就是全表排列;

                2、如果有where 条件,比如where vtype=1 order by vtype asc . 这样order by 也会用到索引!

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值