逻辑回归的应用
文章目录
什么是逻辑回归
逻辑回归,简称LR
它可以将我们离散的特征输入集合转换为0和1这两类的概率
它只有两种结果的选择
比如说购买商品可以选择买或者不买
逻辑回归适合的算法模型
逻辑回归会将特征值转化为0,1
它可以用于解决二分的问题
逻辑回归的原理
逻辑回归=线性回归+sigmoid函数(激活函数)
什么是线性回归
- 用数理统计中回归分析,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析
什么是激活函数
- 当输入值趋于无穷小时,函数值趋近于0,输入值趋近于无穷大时,函数值趋近于1
线性回归与逻辑回归
线性回归
比如用重量来预测尺寸
那就要通过以下的步骤来实现
- 获取数据,包含重量和尺寸
- 建立模型,拟合出一条直线
- 预测
逻辑回归
用重量来判断是否肥胖
相关举例
- 预测病人有没有生病,要么生病,要么没病
- 正例:猜测正确,反例:猜测错误
- 真正类,真反类,假反类,假正类
精确度
- 预测结果为正例样本中真是为正例的比例,用于表示差的准不准
召回率
- 真实为正例的样本中预测结果为正例的比例(表示查的全,对正样本的区分能力)
综合指标
- 公式F1
- F1越大越好
逻辑回归算法实现步骤
- 导入模块
- 创建训练集合测试集
- 创建分类器
- 训练得到预测模型
- 使用预测模型进行预测
优缺点
优点
- 实现简单,广泛的应用于工业问题上
- 当分类时计算量非常小,速度很快,存储资源低
- 便利的观测样本概率分数
- 对逻辑回归而言,多重共线性并不是问题,它可以结合L2正则化来解决该问题
- 计算代价不高,易于理解和实现
缺点
- 当特征空间很大时,逻辑回归的性能不是很好
- 容易欠拟合,一般准确度不太高
- 不能很好地处理大量多类特征或变量
- 只能处理两分类问题,且必须线性可分
- 对于非线性特征,需要进行转换
总结
如果我们需要一个概率架构,比如说,简单地调节分类阈值,指明不确定性,或者是要获得置信区间,或者我们希望以后将更多的训练数据快速整合到模型中去,我们可以使用这个这个算法