模式识别基础


本文根据《模式识别》(张学工 第三版)内容整理

统计决策方法

贝叶斯公式

P ( ω i ∣ x ) = p ( x , ω i ) p ( x ) = p ( x ∣ ω i ) P ( ω i ) p ( x ) P(\omega_{i}|x)=\frac{p(x,\omega_{i})}{p(x)}=\frac{p(x|\omega_{i})P(\omega_{i})}{p(x)} P(ωix)=p(x)p(x,ωi)=p(x)p(xωi)P(ωi)其中 x x x为样本数据, ω i \omega_{i} ωi为类别, p ( ω i ∣ x ) p(\omega_{i}|x) p(ωix)为后验概率, p ( x , ω i ) p(x,\omega_{i}) p(x,ωi)为联合概率密度, p ( x ∣ ω i ) p(x|\omega_{i}) p(xωi)为类条件密度, P ( ω i ) P(\omega_{i}) P(ωi)为先验概率, p ( x ) p(x) p(x)为总体密度。 p ( x ) p(x) p(x)可用全概率公式算出
p ( x ) = ∑ i = 1 n P ( ω i ) p ( x ∣ ω i ) p(x)=\sum_{i=1}^{n}P(\omega_{i})p(x|\omega_{i}) p(x)=i=1nP(ωi)p(xωi)

贝叶斯决策

在分类问题中,对于不同类别总体密度相同,各类别先验概率与条件概率已知,判断样本为哪一类别的决策称为为贝叶斯决策
单个样本x错误率: p ( e ∣ x ) = { P ( ω 2 ∣ x )  decision  x ∈ ω 1 P ( ω 1 ∣ x )  decision  x ∈ ω 2 p(e|x)=\begin{cases} P(\omega_{2}|x) & \text{ decision } x\in \omega_{1} \\ P(\omega_{1}|x) & \text{ decision } x\in \omega_{2} \end{cases} p(ex)={ P(ω2x)P(ω1x) decision xω1 decision xω2
整体错误率: p ( e ) = ∫ P ( e ∣ x ) p ( x ) d x p(e)=\int P(e|x)p(x)dx p(e)=P(ex)p(x)dx
正确率: P ( c ) = 1 − P ( e ) P(c)=1-P(e) P(c)=1P(e)

最小错误率贝叶斯决策

目标是减少错误率,根据定义应将样本归为后验概率较大的一类,即决策规则为:
若 P ( ω 1 ∣ x ) > P ( ω 2 ∣ x ) , 则 x ∈ ω 1 , 否 则 x ∈ ω 2 若P(\omega_{1}|x)> P(\omega_{2}|x),则x\in \omega_{1},否则x\in \omega_{2} P(ω1x)>P(ω2x)xω1xω2后验概率可通过贝叶斯公式求得。由于整体概率相同,可以只判断 p ( x ∣ ω i ) P ( ω i ) p(x|\omega_{i})P(\omega_{i}) p(xωi)P(ωi)项,又先验概率可以事先确定,故可以通过事先计算的似然比阈值 λ \lambda λ判断,定义如下
若 l ( x ) = p ( x ∣ ω 1 ) p ( x ∣ ω 2 ) > λ = P ( ω 2 ) P ( ω 1 ) , 则 x ∈ ω 1 , 否 则 x ∈ ω 2 若l(x)=\frac{p(x|\omega_{1})}{p(x|\omega_{2})}> \lambda = \frac{P(\omega_{2})}{P(\omega_{1})},则x\in \omega_{1},否则x\in \omega_{2} l(x)=p(xω2)p(xω1)>λ=P(ω1)P(ω2)xω1xω2为计算方便定义了对数似然比
h ( x ) = − l n [ l ( x ) ] = − l n p ( x ∣ ω 1 ) + l n p ( x ∣ ω 2 ) 若 h ( x ) &lt; l n P ( ω 1 ) P ( ω 2 ) , 则 x ∈ ω 1 , 否 则 x ∈ ω 2 h(x)=-ln[l(x)]=-lnp(x|\omega_{1})+lnp(x|\omega_{2}) \\若h(x)&lt;ln\frac{P(\omega_{1})}{P(\omega_{2})},则x\in \omega_{1},否则x\in \omega_{2} h(x)=ln[l(x)]=lnp(xω1)+lnp(xω2)h(x)<lnP(ω2)P(ω1)xω1xω2对于多分类情况类似。

最小风险贝叶斯决策

在最小错误率贝叶斯决策的基础上加入损失系数 λ ( α i , ω j ) , i = 1 ⋯ k , j = 1 ⋯ c \lambda(\alpha_{i},\omega_{j}),i=1\cdots k,j=1\cdots c λ(αi,ωj),i=1k,j=1c,c为类别数,k为决策结果。注意这里k与c可以不相等,表示分类时可以将几类合并或者设置拒绝类。 以决策和真实状态组合的损失系数构成决策表,决策表根据背景知识事先确定。 λ ( 1 , 2 ) \lambda(1,2) λ(1,2)表示将第2类样本分入第1类时的损失。通常有 λ 11 = λ 22 = 0 , λ 12 &gt; λ 22 , λ 21 &gt; λ 11 \lambda_{11}=\lambda_{22}=0,\lambda_{12}&gt;\lambda_{22},\lambda_{21}&gt;\lambda_{11} λ11=λ22=0λ12>λ22λ21>λ11
在2分类情况下,决策规则为 若 λ 11 P ( ω 1 ∣ x ) + λ 12 P ( ω 2 ∣ x ) &gt; λ 21 P ( ω 2 ∣ x ) + λ 22 P ( ω 1 ∣ x ) , 则 x ∈ ω 1 , 否 则 x ∈ ω 2 若\lambda_{11}P(\omega_{1}|x)+\lambda_{12}P(\omega_{2}|x)&gt; \lambda_{21}P(\omega_{2}|x)+\lambda_{22}P(\omega_{1}|x),则x\in \omega_{1},否则x\in \omega_{2} λ11P(ω1x)+λ12P(ω2x)>λ21P(ω2x)+λ22P(ω1x)xω1xω2同样可以事先计算的似然比阈值
若 l ( x ) = p ( x ∣ ω 1 ) p ( x ∣ ω 2 ) &gt; λ = P ( ω 2 ) P ( ω 1 ) λ 12 − λ 22 λ 21 − λ 11 , 则 x ∈ ω 1 , 否 则 x ∈ ω 2 若l(x)=\frac{p(x|\omega_{1})}{p(x|\omega_{2})}&gt; \lambda = \frac{P(\omega_{2})}{P(\omega_{1})} \frac{\lambda_{12}-\lambda_{22}}{\lambda_{21}-\lambda_{11}},则x\in \omega_{1},否则x\in \omega_{2} l(x)=p(xω2)p(xω1)>λ=P(ω1)P(ω2)λ21λ11λ12λ22xω1xω2 λ 11 = λ 22 = 0 , λ 21 = λ 12 = 1 \lambda_{11}=\lambda_{22}=0,\lambda_{21}=\lambda_{12}=1 λ11=λ22=0λ21=λ12=1时转化为最小错误率贝叶斯决策。

两类错误率与ROC曲线

在二分类中,通常使用阳性和阴性代表两类检测结果。根据决策正确与否有以下四类结果
决策与状态

灵敏度和特异度

灵敏度Sn和特异度Sp定义如下
S n = T P T P + F N S p = T N T N + F P S_{n}=\frac{TP}{TP+FN} \\ S_{p}=\frac{TN}{TN+FP} Sn=TP+FNTPSp=TN+FPTN灵敏度表示阳性样本中被检测出的比例,特异性表示阴性样本中没有被误判的比例。

两类错误率

假阳性又称为第一类错误(误报、虚警),用 α \alpha α表示;假阴性称为第二类错误(漏检),用 β \beta β表示。则
S n = 1 − β S p = 1 − α S_{n}=1-\beta \\ S_{p}=1-\alpha Sn=1βS

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值