C++堆排序

堆排序

堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。首先简单了解下堆结构。

堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。如下图:
  在这里插入图片描述
  同时,我们对堆中的结点按层进行编号,将这种逻辑结构映射到数组中就是下面这个样子
  在这里插入图片描述
  该数组从逻辑上讲就是一个堆结构,我们用简单的公式来描述一下堆的定义就是:

  • 大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]

  • 小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]

    ok,了解了这些定义。接下来,我们来看看堆排序的基本思想及基本步骤:

堆排序基本思想及步骤

堆排序的基本思想是:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了

步骤一 构造初始堆:将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)

假设给定无序序列结构如下:
在这里插入图片描述
此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。
在这里插入图片描述
找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。
在这里插入图片描述

这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。
在这里插入图片描述
此时,我们就将一个无需序列构造成了一个大顶堆。

步骤二 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。

a.将堆顶元素9和末尾元素4进行交换

在这里插入图片描述
b.重新调整结构,使其继续满足堆定义
在这里插入图片描述
c.再将堆顶元素8与末尾元素5进行交换,得到第二大元素8.
在这里插入图片描述
后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序
在这里插入图片描述
再简单总结下堆排序的基本思路:

a.将无需序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;

b.将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;

c.重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。

代码实现:

#include<iostream>
#include<vector>
#include<math.h>
#include<algorithm>
using namespace std;
void heap_adjust(vector<int>&vec, int node, int size)
{
	int max = node;
	int left = 2 * node + 1; int right=2 * node + 2;  //node的左孩子、右孩子
	if (left < size && vec[max] < vec[left])
		max = left;
	if (right < size && vec[max] < vec[right])
		max = right;
	if (max != node)
	{
		swap(vec[max], vec[node]);
		heap_adjust(vec, max, size);
	}	
}
void heap_sort(vector<int>&vec)
{
	int size = vec.size();
	for (int i = size / 2 - 1; i >= 0; --i)    //从最后一个非叶子节点开始
	{
		heap_adjust(vec, i, size);
	}
	for (int j = size-1; j >= 0; --j)
	{
		swap(vec[0], vec[j]);
		heap_adjust(vec, 0, j);          //去除最后一个节点重新排序
	}

}

时间复杂度分析:

一.初始化建堆

初始化建堆只需要对二叉树的非叶子节点调用adjusthead()函数,由下至上,由右至左选取非叶子节点来调用adjusthead()函数。那么倒数第二层的最右边的非叶子节点就是最后一个非叶子结点。
  假设高度为k,则从倒数第二层右边的节点开始,这一层的节点都要执行子节点比较然后交换(如果顺序是对的就不用交换);倒数第三层呢,则会选择其子节点进行比较和交换,如果没交换就可以不用再执行下去了。如果交换了,那么又要选择一支子树进行比较和交换;高层也是这样逐渐递归。
  那么总的时间计算为:s = 2^( i - 1 ) * ( k - i );其中 i 表示第几层,2^( i - 1) 表示该层上有多少个元素,( k - i) 表示子树上要下调比较的次数。
  S = 2^(k-2) * 1 + 2^(k-3)* 2+…+2*(k-2)+2^(0)*(k-1) ===> 因为叶子层不用交换,所以i从 k-1 开始到 1;
  S = 2^k -k -1;又因为k为完全二叉树的深度,而log(n) =k,把此式带入;
  得到:S = n - log(n) -1,所以时间复杂度为:O(n)

二.排序重建堆
  在取出堆顶点放到对应位置并把原堆的最后一个节点填充到堆顶点之后,需要对堆进行重建,只需要对堆的顶点调用adjustheap()函数。
  每次重建意味着有一个节点出堆,所以需要将堆的容量减一。adjustheap()函数的时间复杂度k=log(n),k为堆的层数。所以在每次重建时,随着堆的容量的减小,层数会下降,函数时间复杂度会变化。重建堆一共需要n-1次循环,每次循环的比较次数为log(i),则相加为:log2+log3+…+log(n-1)+log(n)≈log(n!)。可以证明log(n!)和nlog(n)是同阶函数:
在这里插入图片描述
总结:

初始化建堆的时间复杂度为O(n),排序重建堆的时间复杂度为nlog(n),所以总的时间复杂度为O(n+nlogn)=O(nlogn)。另外堆排序的比较次数和序列的初始状态有关,但只是在序列初始状态为堆的情况下比较次数显著减少,在序列有序或逆序的情况下比较次数不会发生明显变化。

作者:CavalryOuO
来源:CSDN
原文:https://blog.csdn.net/qq_34228570/article/details/80024306
版权声明:本文为博主原创文章,转载请附上博文链接!


作者: dreamcatcher-cx

出处: http://www.cnblogs.com/chengxiao/

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在页面明显位置给出原文链接。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值