
模块6: 提示工程进阶 (16篇)
文章平均质量分 93
模块6: 提示工程进阶 (16篇)
安全风信子
人工智能、信息安全、全栈领域优质创作者, 擅长最新HF/Git热点AI产品推广与各类文章评测,聚焦于前沿技术领域 | CSDN/51CTO/掘金技术社区账号IP名 安全风信子 | 联系方式VX: 自信自立自强
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
81_Few-Shot提示:少样本学习的技巧
在大型语言模型(LLM)时代,提示工程(Prompt Engineering)已成为释放模型潜力的关键技能。其中,Few-Shot Prompting作为一种强大的技术,通过提供少量高质量的示例,显著提升模型在复杂任务上的性能。2025年,随着模型规模和能力的持续增长,Few-Shot Prompting技术也在不断演进,从简单的示例提供发展到更加精细化的优化策略。原创 2025-09-30 14:34:40 · 552 阅读 · 0 评论 -
82_Chain-of-Thought:推理步骤拆解
在大语言模型(LLM)的发展历程中,推理能力一直是衡量模型智能水平的关键指标。尽管模型规模的扩大带来了知识覆盖和语言理解能力的显著提升,但在解决复杂推理问题时,单纯增加参数数量并不总能带来预期的性能提升。2022年,Jason Wei等人提出了一项革命性技术——Chain-of-Thought提示(CoT),这项技术通过引导模型生成中间推理步骤,显著增强了LLM在多步推理任务上的表现。原创 2025-09-30 14:35:16 · 323 阅读 · 0 评论 -
83_角色提示:赋予模型特定身份
在大语言模型(LLM)时代,与AI系统的交互方式正经历着一场深刻变革。从简单的指令式对话到复杂的角色扮演,人类与AI的互动边界不断拓展。其中,角色提示(Role Prompting)作为一种强大的提示工程技术,正逐渐成为释放LLM潜能的关键方法。通过为模型赋予特定身份,我们能够引导其以更符合预期的风格和专业度生成内容,显著提升交互体验和任务完成质量。原创 2025-09-30 14:35:47 · 631 阅读 · 1 评论 -
84_负提示:控制hallucination
在大语言模型(LLM)应用的浪潮中,我们常常惊叹于这些模型展现出的强大能力——它们能够进行复杂推理、生成高质量内容、回答专业问题,甚至进行创意写作。然而,与此同时,LLM也面临着一个显著的挑战:幻觉(hallucination)问题。这些"胡言乱语"或"无中生有"的内容不仅可能误导用户,还可能在关键应用场景中造成严重后果。原创 2025-09-30 14:36:17 · 719 阅读 · 0 评论 -
85_多轮对话:上下文管理与压缩
在大语言模型(LLM)的应用场景中,多轮对话已经成为最核心的交互模式之一。随着2025年LLM技术的快速发展,用户对持续、连贯、个性化的对话体验要求越来越高。然而,多轮对话面临着严峻的技术挑战:首先,LLM的上下文窗口长度虽然在不断扩展(如GPT-5已支持100K tokens),但依然是有限资源;其次,随着对话轮次增加,历史信息不断累积,导致token消耗激增;第三,过长的上下文可能导致模型对早期信息的关注度下降,影响回复质量。原创 2025-09-30 14:36:48 · 902 阅读 · 0 评论 -
86_自动化提示:AutoPrompt工具
在当今人工智能领域,提示工程(Prompt Engineering)已成为释放大语言模型(LLM)潜能的关键技术。随着LLM规模和能力的不断增长,如何设计高效、精确的提示词成为研究和应用的焦点。然而,传统的手工提示工程面临着巨大挑战原创 2025-09-30 14:37:21 · 864 阅读 · 0 评论 -
87_文化适配:多语言提示设计 - 分析本地化提示的适配性
在全球化日益深入的今天,大型语言模型(LLM)的多语言能力已成为其核心竞争力之一。随着企业和开发者将AI应用推广到不同语言区域,如何设计适配各文化背景的提示词,确保模型输出既准确又符合目标语言使用者的文化习惯,已成为提示工程领域的重要挑战。文化适配的多语言提示设计不仅涉及简单的语言翻译,更需要深入理解目标文化的思维模式、表达习惯、价值观和禁忌,通过精心设计的提示策略,引导LLM生成真正贴合当地文化语境的内容。原创 2025-09-30 14:37:56 · 592 阅读 · 0 评论 -
88_多模态提示:图像与文本融合
在人工智能领域的快速发展中,多模态融合已成为突破单一模态限制、实现更全面智能理解的关键技术方向。人类理解世界的方式天然是多模态的——我们同时通过视觉、听觉、语言等多种感官获取信息并进行综合分析。例如,在餐厅点餐时,我们会同时处理菜单上的图片、服务员的介绍和菜品的文字描述,最终做出决策。这种自然的多模态信息整合能力,正是人工智能系统长期以来努力追求的目标。原创 2025-09-30 14:38:27 · 684 阅读 · 0 评论 -
89_批量推理:异步API调用
在当今数据密集型应用和大模型部署的时代,批量推理已成为提升系统性能和资源利用率的关键技术。随着深度学习模型规模的不断扩大和应用场景的日益复杂,如何高效地处理大量推理请求成为技术团队面临的重要挑战。传统的同步API调用方式在面对高并发、大规模数据处理时,往往会遇到响应延迟高、资源利用不充分等问题。异步API调用作为一种更高效的处理模式,通过非阻塞操作和并发处理能力,为批量推理场景提供了理想的解决方案。原创 2025-09-30 14:39:00 · 634 阅读 · 0 评论 -
90_推理优化:性能调优技术
随着大型语言模型(LLM)规模的不断扩大和应用场景的日益复杂,推理性能已成为制约模型实际部署和应用的关键因素。尽管大模型在各项任务上展现出了令人惊艳的能力,但其庞大的参数量和计算需求也带来了严峻的性能挑战。在资源受限的环境中,如何在保持模型效果的同时,最大化推理性能,成为了研究人员和工程师们亟待解决的核心问题。原创 2025-09-30 14:39:41 · 1000 阅读 · 0 评论 -
91_提示注入:安全提示工程
随着大型语言模型(LLM)技术的快速发展和广泛应用,AI系统正以前所未有的方式改变着我们的工作和生活。然而,这种强大的技术也带来了新的安全挑战,其中提示注入(Prompt Injection)攻击已成为最具威胁性的安全问题之一。提示注入攻击通过精心构造的输入,操纵或欺骗AI系统执行非预期行为,可能导致数据泄露、权限绕过、输出不当内容等严重后果原创 2025-10-01 00:09:12 · 930 阅读 · 0 评论 -
92_自我反思提示:输出迭代优化
在大型语言模型(LLM)应用日益普及的今天,如何持续提升模型输出质量成为了业界关注的核心问题。传统的提示工程方法往往依赖一次性输入输出,难以应对复杂任务中的多轮优化需求。2025年,自我反思提示技术(Self-Reflection Prompting)作为提示工程的前沿方向,正在改变我们与LLM交互的方式。这项技术通过模拟人类的自我反思认知过程,让模型能够对自身输出进行评估、反馈和优化,从而实现输出质量的持续提升。原创 2025-10-01 00:09:55 · 317 阅读 · 0 评论 -
93_安全提示:过滤有害内容
随着大型语言模型(LLM)在各个领域的广泛应用,确保其安全性和可靠性已成为技术社区关注的焦点。2024-2025年,随着LLM能力的不断增强,其潜在风险也日益凸显。有害内容的生成和传播不仅可能造成社会危害,还会对企业和用户带来严重的法律和声誉风险。因此,构建强健的内容过滤机制已成为LLM应用部署的必要条件。原创 2025-10-01 00:10:25 · 237 阅读 · 0 评论 -
94_提示压缩:成本砍半,性能不减!极简提示的降本增效艺术
在大语言模型(LLM)应用中,提示工程已成为提升模型性能和控制输出的关键技术。然而,随着模型能力的增强和应用场景的复杂化,提示文本往往变得冗长,导致token消耗急剧增加。这不仅直接影响到API调用成本,还可能超出模型的上下文窗口限制,特别是在使用GPT-5、Claude 4等大模型时,每1000个token的成本可能高达数美分。对于需要频繁交互或批量处理的应用场景,如客服系统、内容生成平台或自动化工作流,token消耗的优化就显得尤为重要。原创 2025-10-01 01:36:04 · 309 阅读 · 0 评论 -
95_跨任务提示:一个提示=无限可能!告别繁琐的单任务处理
在大语言模型(LLM)应用开发中,我们常常面临需要处理多个相关任务的场景。传统方法是为每个任务单独设计提示并调用API,这不仅增加了开发复杂度,还会导致token消耗增加和响应延迟累积。跨任务提示(Multi-Task Prompting)作为一种高效的提示工程技术,能够在单个提示中集成多个相关任务,让LLM一次调用完成多种处理需求。原创 2025-10-01 01:36:40 · 344 阅读 · 0 评论 -
96_主动学习提示:用户反馈驱动优化
在人工智能快速发展的今天,大型语言模型(LLM)已经成为各行各业的核心工具。然而,如何让LLM能够持续学习和适应新的需求,如何从用户交互中获取有价值的信息来优化模型性能,已经成为当前研究和应用的热点。主动学习提示(Active Learning Prompts)作为一种新型的提示工程技术,通过用户反馈的闭环系统,实现了模型能力的持续优化和提升。原创 2025-10-01 00:11:48 · 957 阅读 · 1 评论