极限值的若干方法-详解(I)

文章探讨了在数学分析中等价替换的概念,列举了一些常用的等价替换公式,并强调理解而非机械记忆的重要性。同时提到了初等变形技巧,如三角函数变换和平方差等,这些常与等价替换结合用于解决复杂问题。此外,文章还指出利用已知极限是解决问题的关键策略之一。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目1.3与参考答案取自《数学分析中的经典问题与方法》斐礼文第三版P24-42,详细解析为个人思考写得。

IDEA 一.等价替换与初等变形

等价替换

常用的等价替换公式(不必记忆,以多用的方式去记忆)

x -> 0时,

(1) (a>0 & b ≠ 0)

(2)

课本与教程往往没有给出详细证明,但实际也很简单,本质就是等价无穷小的证明:

初等变形

所谓的初等变形,就是比如三角函数的变形平方差整数累和经典递推公式

一般这种题目有时不单纯考初等变形,还会结合等价替换一起考察。

IDEA 二.利用已知极限

利用一些已知的极限式子或极限推导式子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值