回溯法——总结(是否包含重复元素,是否全排列)

回溯法 主要要考虑三种情况:

如果是输出的是全排列,即元素顺序不一样,也属于不一样的结果:
设置循环: for (int i = 0; i < nums.length; i++) ,不需要记录当前下标,例如:idx+1或者idx 带入到下一轮循环dfs(nums, temp)
还需要设置visited数组来标记已遍历元素

如果输出的结果,元素顺序不一样,但属于一样的结果;但是每个元素能重复使用;
设置循环: for (int i = idx; i < nums.length; i++) ,需要记录当前下标,idx 带入到下一轮循环dfs(nums, temp)
不需要设置visited数组来标记已遍历元素

如果输出的结果,元素顺序不一样,但属于一样的结果;每个元素不能重复使用;
设置循环: for (int i = idx; i < nums.length; i++) ,需要记录当前下标,idx+1 带入到下一轮循环dfs(nums, temp)
不需要设置visited数组来标记已遍历元素

简单来说(上述总结):
一、是否包含重复元素:
如果是全排列(顺序不一样,结果不一样):需要排序+设置剪枝条件:if(i>index && candidates[i] == candidates[i-1]) continue; 没有重复元素则不用加。
如果不是全排列(顺序不一样,结果一样),需要排序+设置剪枝条件:if(i>0&& candidates[i] == candidates[i-1]) continue; 没有重复元素则不用加。
二、当前元素能否被重复选取:

  • 如果是全排列(顺序不一样,结果不一样),设置循环: for (int i = 0; i < nums.length; i++) ,还需考虑当前元素能否被重复选取,若不能则设置visited数组来标记已遍历元素;若能则不需要。
  • 如果不是全排列(顺序不一样,结果一样),设置循环: for (int i = idx; i < nums.length; i++) ,还需考虑当前元素是否能够重复选取:若不能则dx+1 带入到下一轮循环dfs(nums, temp);若能重复选取则记录当前下标,idx 带入到下一轮循环dfs(nums, temp);
    总结循环条件里的i初始化:
    在这里插入图片描述
class Solution {
    List<List<Integer>> res;
    List<Integer> path;
    public List<List<Integer>> permute(int[] nums){
        res = new ArrayList<>();
        path = new ArrayList<>();
        int[] visited = new int[nums.length];
        dfs(nums, visited);
        return res;
    }
    public void dfs(int[] nums, int[] visited) {
        if(path.size() == nums.length){
            res.add(new ArrayList(path));
            return;
        }
        for(int i=0; i<nums.length; i++){
            if(visited[i] == 1) continue;
            path.add(nums[i]);
            visited[i] = 1;
            dfs(nums, visited);
            visited[i] = 0;
            path.remove(path.size()-1);
        }
    }
}

在这里插入图片描述

class Solution {
    public String[] permutation(String s) {
        List<String> res = new ArrayList<>();
        StringBuilder sb = new StringBuilder();
        char[] arr = s.toCharArray();
        Arrays.sort(arr);
        boolean[] used = new boolean[s.length()];
        backtracking(0, sb, res, used, arr);
        return res.toArray(new String[res.size()]);   //?
    }
    private void backtracking(int level, StringBuilder sb, List<String> res, boolean[] used, char[] arr){
        if(level == arr.length){
            res.add(sb.toString());
            return;
        }
        for(int i=0; i<arr.length; i++){
            if(used[i]) continue;
            //处理同层重复元素 剪枝
            if(i>0 && arr[i]==arr[i-1] && !used[i-1])  continue;
            sb.append(arr[i]);
            used[i] = true;
            backtracking(level+1, sb, res, used, arr);
            sb.deleteCharAt(sb.length()-1);
            used[i] = false;
        }
    }
}

在这里插入图片描述

class Solution {
    List<List<Integer>> res;
    LinkedList<Integer> path;
    public List<List<Integer>> permuteUnique(int[] nums) {
        res = new LinkedList<>();
        path = new LinkedList<>();
        boolean[] visited = new boolean[nums.length];
        Arrays.sort(nums);
        dfs(nums, visited);
        return res;
    }
    public void dfs(int[] nums, boolean[] visited){
        if(path.size() == nums.length){
            res.add(new LinkedList(path));
            return;            
        }   
        for(int i=0; i<nums.length; i++){
            if(i>0 && nums[i] == nums[i-1] && !visited[i-1])    continue;  
            if(visited[i])    continue;
            path.add(nums[i]);
            visited[i] = true;
            dfs(nums,visited);
            visited[i] = false;
            path.removeLast();
        }
    }
}

在这里插入图片描述

class Solution {
    LinkedList<List<Integer>> res;
    LinkedList<Integer> path;
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        res = new LinkedList<>();
        path = new LinkedList<>();
        Arrays.sort(candidates);
        dfs(candidates, 0, target);
        return res;
        
    }
    public void dfs(int[] candidates, int index, int target) {
        if(target == 0) {
            res.add(new LinkedList<>(path));
            return;
        }
        for(int i=index; i<candidates.length; i++){
            if(target-candidates[i] < 0)  break; 
            path.add(candidates[i]);
            dfs(candidates, i, target-candidates[i]);
            path.removeLast();
        } 
    }
}

在这里插入图片描述

class Solution {
    LinkedList<Integer> path;
    LinkedList<List<Integer>> res;
    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        path = new LinkedList<>();
        res = new LinkedList<>();
        Arrays.sort(candidates);
        dfs(candidates, 0,target);
        return res;
    }
    public void dfs(int[] candidates, int index, int target) {
        if(target == 0){
            res.add(new LinkedList(path));
            return;
        }
        for(int i=index; i<candidates.length; i++){
            if(target-candidates[i] < 0)    break;
            if(i>index && candidates[i] == candidates[i-1])   continue;
            path.add(candidates[i]);
            dfs(candidates,i+1,target-candidates[i]);
            path.removeLast();   
        }
    }
}

在这里插入图片描述

class Solution {
    List<List<Integer>> res = new ArrayList<>();
    public List<List<Integer>> subsets(int[] nums) {
        dfs(nums, 0, new ArrayList<>());
        return res;
    }
    public void dfs(int[] nums, int idx, List<Integer> temp) {
        res.add(new ArrayList<>(temp));
        for (int i = idx; i < nums.length; i++) {
            temp.add(nums[i]);
            dfs(nums, i+1, temp);
            temp.remove(temp.size() - 1);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值