递归算法的总结(Java)

什么是递归

递归:简单来说就是自己调用自己
如:
main(){
a();
}
a(){
a();
}
-递归的分类:
-递归可以分为两种,直接递归和间接递归
-直接递归:方法自己调用自己;
-简介递归:方法间接调用自己;
如:A方法调用B方法,B方法再调用A方法;
a(){
b();
}
b(){
a();
}
-注意事项:
-递归一定要有条件判定(即递归出口),保证递归可以停止下来,否则会发生栈溢出;
-在递归中虽然有出口,但递归次数不能太多,否则也会发生栈溢出;
-构造方法禁止递归。
-递归的使用前提:
-当调用方法的时候,方法的主体不变,每次调用的参数也不同,可以使用递归
-代码示例:

public class Main {
    public static void main(String[] args){
        // a();
        b();
    }

//     3.构造方法,禁止递归
//     编译报错:构造方法是创建对象使用的,不能让对象一直创建下去
//
//    public Demo01DiGui()
//    {
//        //Demo01DiGui();
//    }
//2.在递归中虽然有限定条件,但是递归次数不能太多。否则也会发生栈内存溢出。
// 4993
// Exception in thread "main" java.lang.StackOverflowError
    private static void b(int i){
        System.out.println(i);
        //添加一个递归结束的条件,i==5000的时候结束
        if(i==5000){
            return;//结束方法
        }
        b(++i);
    }
    //1.递归一定要有条件限定,保证递归能够停止下来,否则会发生栈内存溢出。Exception in thread "main"
    //java.lang.StackOverflowError
    private static void a(){
        System.out.println("a方法");
        a();
    }
}

对于递归问题的思考方式:

在初学递归的时候, 看到一个递归实现, 我们总是难免陷入不停的验证之中,比如上面提及的阶乘,求解Factorial(n)时,我们总会情不自禁的发问,Factorial(n-1)可以求出正确的答案么?接着我们就会再用Factorial(n-2)去验证,,,不停地往下验证直到Factorial(0)。

对递归这样的不适应,和我们平时习惯的思维方式有关。我们习惯的思维是:已知Factorial(0),乘上 1 就等于Factorial(1),再乘以 2 就等于Factorial(2),,,直到乘到 n。

而递归和我们的思维方式正好相反。

那我们怎么判断这个递归计算是否是正确的呢?Paul Graham 提到一种方法,如下:

如果下面这两点是成立的,我们就知道这个递归对于所有的 n 都是正确的。

当 n=0,1 时,结果正确;

假设递归对于 n 是正确的,同时对于 n+1 也正确。

这种方法很像数学归纳法,也是递归正确的思考方式,上述的第 1 点称为基本情况,第 2 点称为通用情况。

在递归中,我们通常把第 1 点称为终止条件,因为这样更容易理解,其作用就是终止递归,防止递归无限地运行下去。

递归示例:

计算1~n的和
思路分析:n的累和其实可以看作是一个数列,该数列的递推公式为:
N(n) = n + N(n-1);
当n = 1 时为递归出口所以可以将累和的操作定义成一个方法,递归调用。
代码如下:

public static void main(String[] args) {
        //计算1~num的和,使用递归完成
        int num = 5;
        // 调用求和的方法
        int sum = getSum(num);
        // 输出结果
        System.out.println(sum);
    }

    /*
    通过递归算法实现.
    参数列表:int
    返回值类型: int
    */
    public static int getSum(int num) {
        /*
        num为1时,方法返回1,
        相当于是方法的出口,num总有是1的情况
        */
        if (num == 1) {
            return 1;
        }
        /*
        num不为1时,方法返回 num +(num‐1)的累和
        递归调用getSum方法
         */
        return num + getSum(num-1);
    }

代码执行图解:
在这里插入图片描述

什么时候该用递归

当我们遇到一个问题时,我们是怎么判断该题用递归来解决的?

问题可用递归来解决需具备的条件:

子问题需与原问题为同样的事,且规模更小;

程序停止条件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值