什么是递归
递归:简单来说就是自己调用自己
如:
main(){
a();
}
a(){
a();
}
-递归的分类:
-递归可以分为两种,直接递归和间接递归
-直接递归:方法自己调用自己;
-简介递归:方法间接调用自己;
如:A方法调用B方法,B方法再调用A方法;
a(){
b();
}
b(){
a();
}
-注意事项:
-递归一定要有条件判定(即递归出口),保证递归可以停止下来,否则会发生栈溢出;
-在递归中虽然有出口,但递归次数不能太多,否则也会发生栈溢出;
-构造方法禁止递归。
-递归的使用前提:
-当调用方法的时候,方法的主体不变,每次调用的参数也不同,可以使用递归
-代码示例:
public class Main {
public static void main(String[] args){
// a();
b();
}
// 3.构造方法,禁止递归
// 编译报错:构造方法是创建对象使用的,不能让对象一直创建下去
//
// public Demo01DiGui()
// {
// //Demo01DiGui();
// }
//2.在递归中虽然有限定条件,但是递归次数不能太多。否则也会发生栈内存溢出。
// 4993
// Exception in thread "main" java.lang.StackOverflowError
private static void b(int i){
System.out.println(i);
//添加一个递归结束的条件,i==5000的时候结束
if(i==5000){
return;//结束方法
}
b(++i);
}
//1.递归一定要有条件限定,保证递归能够停止下来,否则会发生栈内存溢出。Exception in thread "main"
//java.lang.StackOverflowError
private static void a(){
System.out.println("a方法");
a();
}
}
对于递归问题的思考方式:
在初学递归的时候, 看到一个递归实现, 我们总是难免陷入不停的验证之中,比如上面提及的阶乘,求解Factorial(n)时,我们总会情不自禁的发问,Factorial(n-1)可以求出正确的答案么?接着我们就会再用Factorial(n-2)去验证,,,不停地往下验证直到Factorial(0)。
对递归这样的不适应,和我们平时习惯的思维方式有关。我们习惯的思维是:已知Factorial(0),乘上 1 就等于Factorial(1),再乘以 2 就等于Factorial(2),,,直到乘到 n。
而递归和我们的思维方式正好相反。
那我们怎么判断这个递归计算是否是正确的呢?Paul Graham 提到一种方法,如下:
如果下面这两点是成立的,我们就知道这个递归对于所有的 n 都是正确的。
当 n=0,1 时,结果正确;
假设递归对于 n 是正确的,同时对于 n+1 也正确。
这种方法很像数学归纳法,也是递归正确的思考方式,上述的第 1 点称为基本情况,第 2 点称为通用情况。
在递归中,我们通常把第 1 点称为终止条件,因为这样更容易理解,其作用就是终止递归,防止递归无限地运行下去。
递归示例:
计算1~n的和
思路分析:n的累和其实可以看作是一个数列,该数列的递推公式为:
N(n) = n + N(n-1);
当n = 1 时为递归出口所以可以将累和的操作定义成一个方法,递归调用。
代码如下:
public static void main(String[] args) {
//计算1~num的和,使用递归完成
int num = 5;
// 调用求和的方法
int sum = getSum(num);
// 输出结果
System.out.println(sum);
}
/*
通过递归算法实现.
参数列表:int
返回值类型: int
*/
public static int getSum(int num) {
/*
num为1时,方法返回1,
相当于是方法的出口,num总有是1的情况
*/
if (num == 1) {
return 1;
}
/*
num不为1时,方法返回 num +(num‐1)的累和
递归调用getSum方法
*/
return num + getSum(num-1);
}
代码执行图解:
什么时候该用递归
当我们遇到一个问题时,我们是怎么判断该题用递归来解决的?
问题可用递归来解决需具备的条件:
子问题需与原问题为同样的事,且规模更小;
程序停止条件。