第五节笔记

在本教程中,我们详细介绍了如何使用LMDeploy进行大模型的部署、对话、量化以及服务化。LMDeploy是一个强大的工具,它提供了一整套解决方案,用于高效地处理和部署大型语言模型(LLM)。以下是对整个教程的总结,包括关键步骤和代码示例。

### 1. 开发机和环境设置
首先,我们介绍了如何在InternStudio平台上创建开发机,并配置合适的镜像和GPU资源。接着,我们创建了一个名为`lmdeploy`的conda环境,并激活了该环境,为后续的模型部署和运行做好准备。

### 2. LMDeploy模型对话
在这一章节中,我们首先介绍了HuggingFace社区和TurboMind引擎。HuggingFace是一个广泛的深度学习模型和数据集社区,而TurboMind是LMDeploy团队开发的高效推理引擎,专为LLM推理设计。

我们展示了如何在InternStudio开发机上下载预训练模型,并使用Transformer库运行这些模型。随后,我们使用LMDeploy的`chat`功能与模型进行了互动,体验了其快速的推理速度。

### 3. LMDeploy模型量化
在量化部分,我们讨论了计算密集和访存密集的概念,并介绍了KV8量化和W4A16量化技术。这些技术通过降低参数和中间结果的精度,以换取空间节省和性能提升。我们通过调整KV Cache的大小和使用AWQ算法进行权重量化,有效地减少了模型的显存占用。

### 4. LMDeploy服务化
服务化章节讲解了如何将大模型封装为API接口服务。我们启动了一个API服务器,并通过命令行客户端和网页客户端与该服务进行交互。这样,用户可以通过简单的HTTP请求来获取模型的推理结果。

### 5. Python代码集成
在Python代码集成部分,我们展示了如何在Python代码中使用LMDeploy的`pipeline`模块来运行大模型。我们还学习了如何通过`TurbomindEngineConfig`传递参数,以调整模型的运行配置。

### 6. 拓展部分
最后,我们探讨了使用LMDeploy运行视觉多模态大模型llava的方法,并尝试了使用Gradio作为前端进行交互。此外,我们还比较了LMDeploy与Transformer库在推理速度上的差异,并通过实验得出了LMDeploy具有更快的推理速度。

通过本教程,我们学习了如何高效地部署和使用大型语言模型,体验了LMDeploy在模型量化、服务化以及性能优化方面的强大功能。这些技能对于在实际项目中处理和部署大型AI模型非常有价值。

  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值