- 博客(5)
- 收藏
- 关注
原创 目标检测的核心任务以及现代检测器的常见方法
在目标检测任务中,IOU(Intersection over Union,交并比)是一个关键指标,用于衡量预测边界框与真实边界框之间的重叠程度。为了区分正负样本,在训练模型时需要设定一个IOU阈值。例如,通常将IOU ≥ 0.5的预测框视为正样本,而IOU < 0.5的预测框标记为负样本。这种划分方式有助于模型学习目标特征,并优化定位精度。不同场景可能需要调整阈值以适应具体需求。IOU的取值范围是[0, 1],其中1表示两个框完全重合,而0表示完全没有重叠。现代检测器不直接解决集合预测问题,而是通过。
2025-06-06 16:33:40
540
原创 数字图像处理学习笔记1
其中,N、M分别是x方向、y方向图像像素点的个数, f分别是原始图像和测试图像在(i,j)点上的取值,L是图像中灰度取值的范围,对8比特的灰度图像而言,L=256。1、层次,层次即为图像实际拥有的灰度级数量,灰度级即为表示像素明暗程度的整数量,图像数据的实际层数越多,视觉效果就越好。3、清晰度,与图像亮度、对比度、颜色饱和度、尺寸大小等相关。2、对比度,是指一副图像中灰度反差的大小。2、峰值信噪比(PSNR)1、均方误差(MSE)
2024-07-16 17:47:28
211
原创 Class-Aware Generative Adversarial Transformers for Medical Image Segmentation---用于医学图像分割的类感知生成对抗变换
本文介绍了Castformer,一种简单而有效的生成对抗变换器,用于二维医学图像分割。 其关键洞察是集成多尺度金字塔结构,捕捉丰富的全局空间信息和局部多尺度上下文信息。
2022-10-20 21:35:50
1923
原创 SegNeXt---语义切分中卷积注意力设计的再思考
基于以往成功的分割模型的良好特性,提出了一个定制的卷积注意力模块MSCA和一个CNN风格的网络Segnext。
2022-10-19 11:22:37
1709
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人