解题思路;
首先想到用dfs来遍历整棵树,题目要求计算点对的个数,那么一个个来暴力肯定是不行的, 用树状数组来维护树上一条路上的数值的个数,但是又因为数值大小达到1e9,数组是开不下的,且只有1e5个点,意味着不可能将整个数组填满,可以使用离散化,计算还需要k/a[t],所以数组大小是2*1e5,排序,二分找到他们在数组中所对应的位置,便是离散化后的值。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <cmath>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
const int maxn=100005;
int a[maxn];
LL b[2*maxn];
int in[maxn];
int c[2*maxn];
vector<int> G[100005];
LL cnt,sum;
int root;
LL k;
void add(int x,int v)
{
while(x<=2*maxn)
{
c[x]+=v;
x+=x&-x;
}
}
int query(int x)
{
int sum=0;
while(x)
{
sum+=c[x];
x-=x&-x;
}
return sum;
}
void dfs(int r)
{
//printf("%d\n",r);
int len=G[r].size();
sum+=(LL)query(lower_bound(b+1,b+cnt+1,k/a[r])-b);
add(lower_bound(b+1,b+cnt+1,a[r])-b,1);
for(int i=0;i<len;i++)
{
dfs(G[r][i]);
}
add(lower_bound(b+1,b+cnt+1,a[r])-b,-1);
return ;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
memset(in,0,sizeof(in));
memset(c,0,sizeof(c));
sum=0;
int n;
scanf("%d%I64d",&n,&k);
for(int i=1;i<=n;i++)
G[i].clear();
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
b[i]=a[i];
}
int u,v;
for(int i=1;i<n;i++)
{
scanf("%d%d",&u,&v);
G[u].push_back(v);
in[v]++;
}
cnt=n;
for(int i=1;i<=n;i++)
b[++cnt]=k/a[i];
sort(b+1,b+cnt+1);
cnt=unique(b+1,b+cnt+1)-b-1;
//printf("werwer %d\n",cnt);
for(int i=1;i<=n;i++)
{
if(in[i]==0)
{
root=i;
break;
}
}
dfs(root);
printf("%I64d\n",sum);
}
return 0;
}