从一道动态规划到卡特兰数

LeetCode 96

题目链接:https://leetcode-cn.com/problems/unique-binary-search-trees/

题意:给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?

n = 3 时:

动态规划

思路:从 1 开始到 n ,每次以这个数为根,左子树存放比它小的数,右子树存放比它大的数。每个根不重复,因此每个树也必定不重复。

左子树和右子树,又可以按照这个规则去生成新的树。

例如:n = 3的时候

1为根: 比 1 小的数只有 0,不用管。比 1 大的数有 2 和 3。

拿 2 和 3 来生成一棵树和拿 1 和 2 来生成一棵树的种数是不是相同的?那么 1 和 2 能生成多少种树呢?

2为根: 比 2 小的是 1,比 2 大的是 3。这里只有 1 种。

3为根: 比 3 小的是 1 和 2,1 和 2 能生成多少种树呢?

我们先暂停思维,来到一个新的问题。 n = 2 的时候,结果应该是多少?

n = 2 的时候,按照我们之前的方法。

1 为根:比 1 大的数只有 2, 这里有 1 种。
2 为根:比 2 小的数只有 1, 这里有 1 种。

那答案就应该是 2 种。

解决了 n = 2 的问题,那 n = 3 的问题就也解决了。 ans = 2 + 1 + 2 = 5。

我们来看一般情况。输入一个 n 。

定义一个 F(i) 表示以 i 为根,生成的树的种数。

定义一个 G(n) 表示输入 n 的时候,输出的结果。此处一定要注意 F 与 G 的区别。

以 i 为根的时候,能生成多少种树?

比 i 小的有 i - 1 个,比 i 大的有 n - i 个。因此左子树有 i - 1 个, 右子树有 n - i 个数。那么,F(i) = G(i - 1) * G(n - i)。

而我们求的 G(n) = F(1) + F(2) + …… + F(n)。

把两个公式综合 :

G(n) = ∑ i = 1 n G ( i − 1 ) ∗ G ( n − i ) \displaystyle \sum^{n}_{i = 1}{G(i-1)}*G(n-i) i=1nG(i1)G(ni)

d[0] = 1; // 0 的时候特殊处理
for (int i = 1; i <= n; i++)
	for (int j = 1; j <= i; j++) 
		d[i] += d[j-1] * d[i-j]; 

以上是利用动态规划求解的思路。

时间复杂度:O(n^2)

空间复杂度:O(n)

Catalan公式

这个题目还有一种很强的解法,卡特兰公式。卡特兰公式和排列组合有很大关系,不属于偏难怪解法,有很多算法和数据结构的问题本质上就是卡特兰公式的应用。比如二叉树的形态数,出栈序列数,括号匹配问题等。公式不要紧,没必要去硬背。主要是理解卡特兰问题应用的特征,把问题抽象到已有模型中来。

Catalan 递推项满足:

C(n) = C(0) * C(n-1) + C(1) * C(n-2) + … + C(n-2) * C(1) + C(n-1) * C(0)

Catalan 通项公式: C n C_{n} Cn =

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值