问题:
A fraction whose numerator is 1 and whose denominator is a positive integer is called a unit fraction. A representation of a positive rational number p/q as the sum of finitely many unit fractions is called a partition of p/q into unit fractions. For example, 1/2 + 1/6 is a partition of 2/3 into unit fractions. The difference in the order of addition is disregarded. For example, we do not distinguish 1/6 + 1/2 from 1/2 + 1/6.
For given four positive integers p, q, a, and n, count the number of partitions of p/q into unit fractions satisfying the following two conditions.
The partition is the sum of at most n many unit fractions.
The product of the denominators of the unit fractions in the partition is less than or equal to a.
For example, if (p,q,a,n) = (2,3,120,3), you should report 4 since
enumerates all of the valid partitions.
Input
The input is a sequence of at most 200 data sets followed by a terminator.
A data set is a line containing four positive integers p, q, a, and n satisfying p,q <= 800, a <= 12000 and n <= 7. The integers are separated by a space.
The terminator is composed of just one line which contains four zeros separated by a space. It is not a part of the input data but a mark for the end of the input.
Output
The output should be composed of lines each of which contains a single integer. No other characters should appear in the output.
The output integer corresponding to a data set p, q, a, n should be the number of all partitions of p/q into at most n many unit fractions such that the product of the denominators of the unit fractions is less than or equal to a.
Sample Input
2 3 120 3 2 3 300 3 2 3 299 3 2 3 12 3 2 3 12000 7 54 795 12000 7 2 3 300 1 2 1 200 5 2 4 54 2 0 0 0 0
Sample Output
4 7 6 2 42 1 0 9 3
大意:
给你四个数p,q,a,n。p表示分子,q表示分母,然后你把这个分数分成若干个分子为1的分数,这些分数个数不能多于n,分母之积不能大于a,问有多少中分法。
思路:
1:利用深搜,枚举每一个可能的分子。
2:因为题意分子没有顺序要求,所以我们枚举的时候可以按照由大到小的顺序枚举。
代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int p,q,a,n,sum;
void dfs(int p,int q,int mod,int d,int t)
/*
p:当前分子,q:当前分母,mod:分母之积
d:上一个枚举到的分子的分母,t:用了多少个分子为1的分数
*/
{
if(p==0&&mod<=a)//分数之和等于目标分数
{
sum++;
return;
}
if(t>=n||p<=0||mod*d>a)//用的分数超出所给范围||分数之和超出了目标||分母之积超出范围
return;
for(int i=d; i*mod<=a; i++)//从不大于上一个的分数枚举
{
int td=p*i-q;//每用一个分数就从原分数中减去,当减到0时就相当于目标分数相等
if(td>=0)
dfs(td,q*i,mod*i,i,t+1);
}
}
int main()
{
while(~scanf("%d%d%d%d",&p,&q,&a,&n)&&(p||q||a||n))
{
sum=0;
dfs(p,q,1,1,0);
printf("%d\n",sum);
}
return 0;
}