传送门:poj1321。
因为k个棋子不同行不同列,假设每个棋子都有编号1,2,3....可以推知,假设当前行c已摆放棋子,则从当前行往下,1号棋子可以放置的行有c到n-(k-1)+1,2号棋子放置的行有c到n-(k-2)+1......摆放了t个棋子以后下一个棋子可以摆放的行为c到n-(k-t)+1,需要注意的是可以摆放的行不是一定能摆放,还要看这一行里有没有#所在的列没有被标记出来,然后dfs就好了。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int n,k;
char chess[10][10];
int book[10];
int ans=0;
int dfs(int c,int t)
{
if(t==k)//如果已经摆放了k个,则返回并把结果+1.
return ans++;
for(int i=c+1;i<=(n-k+t+1);i++)//注意是从c+1行开始
{
for(int j=1;j<=n;j++)
{
if(!book[j]&&chess[i][j]=='#')
{
book[j]=1;
dfs(i,t+1);
book[j]=0;
}
}
}
return 0;
}
int main()
{
while(scanf("%d%d",&n,&k)&&n!=-1&&k!=-1)
{
ans=0;
getchar();
memset(book,0,sizeof(book));
memset(chess,0,sizeof(chess));
for(int i=1;i<=n;i++)
gets(chess[i]+1);
for(int i=1;i<=(n-k+1);i++)//枚举第一行可能的摆放情况
{
for(int j=1;j<=n;j++)
if(chess[i][j]=='#')
{
book[j]=1;
dfs(i,1);
book[j]=0;
}
}
printf("%d\n",ans);
}
return 0;
}