棋盘问题(poj1321)dfs

30 篇文章 0 订阅

传送门:poj1321

因为k个棋子不同行不同列,假设每个棋子都有编号1,2,3....可以推知,假设当前行c已摆放棋子,则从当前行往下,1号棋子可以放置的行有c到n-(k-1)+1,2号棋子放置的行有c到n-(k-2)+1......摆放了t个棋子以后下一个棋子可以摆放的行为c到n-(k-t)+1,需要注意的是可以摆放的行不是一定能摆放,还要看这一行里有没有#所在的列没有被标记出来,然后dfs就好了。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int n,k;
char chess[10][10];
int book[10];
int ans=0;
int dfs(int c,int t)
{
	if(t==k)//如果已经摆放了k个,则返回并把结果+1.
	return ans++;
	for(int i=c+1;i<=(n-k+t+1);i++)//注意是从c+1行开始
	{
		for(int j=1;j<=n;j++)
		{
			if(!book[j]&&chess[i][j]=='#')
			{
				book[j]=1;
				dfs(i,t+1);
				book[j]=0;
			}
		}
	}
	return 0;
}
int main()
{

	while(scanf("%d%d",&n,&k)&&n!=-1&&k!=-1)
	{
		ans=0;
		getchar();
		memset(book,0,sizeof(book));
		memset(chess,0,sizeof(chess));
		for(int i=1;i<=n;i++)
		gets(chess[i]+1);
		for(int i=1;i<=(n-k+1);i++)//枚举第一行可能的摆放情况
		{
			for(int j=1;j<=n;j++)
			if(chess[i][j]=='#')
			{
				book[j]=1;
				dfs(i,1);
				book[j]=0;
			}
			
		}
		
		printf("%d\n",ans);
	}
return 0;
}

POJ 1321 排兵布阵问题可以使用 DFS 算法求解。 题目要求在一个 n x n 的棋盘上,放置 k 个棋子,其中每行、每列都最多只能有一个棋子。我们可以使用 DFS 枚举每个棋子的位置,对于每个棋子,尝试将其放置在每一行中未被占用的位置上,直到放置了 k 个棋子。在 DFS 的过程中,需要记录每行和每列是否已经有棋子,以便在尝试放置下一个棋子时进行判断。 以下是基本的 DFS 模板代码: ```python def dfs(row, cnt): global ans if cnt == k: ans += 1 return for i in range(row, n): for j in range(n): if row_used[i] or col_used[j] or board[i][j] == '.': continue row_used[i] = col_used[j] = True dfs(i + 1, cnt + 1) row_used[i] = col_used[j] = False n, k = map(int, input().split()) board = [input() for _ in range(n)] row_used = [False] * n col_used = [False] * n ans = 0 dfs(0, 0) print(ans) ``` 其中,row 代表当前尝试放置棋子的行数,cnt 代表已经放置的棋子数量。row_used 和 col_used 分别表示每行和每列是否已经有棋子,board 则表示棋盘的状态。在尝试放置棋子时,需要排除掉无法放置的位置,即已经有棋子的行和列,以及棋盘上标记为 '.' 的位置。当放置了 k 个棋子时,即可计数一次方案数。注意,在回溯时需要将之前标记为已使用的行和列重新标记为未使用。 需要注意的是,在 Python 中,递归深度的默认限制为 1000,可能无法通过本题。可以通过以下代码来解除限制: ```python import sys sys.setrecursionlimit(100000) ``` 完整代码如下:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值