传送门:POJ2528
题意:在墙上贴海报,海报可以互相覆盖,问最后可以看见几张海报
思路:这题数据范围很大,直接搞超时+超内存,需要离散化:
离散化简单的来说就是只取我们需要的值来用,比如说区间[1000,2000],[1990,2012] 我们用不到[-∞,999][1001,1989][1991,1999][2001,2011][2013,+∞]这些值,所以我只需要1000,1990,2000,2012就够了,将其分别映射到0,1,2,3,在于复杂度就大大的降下来了
所以离散化要保存所有需要用到的值,排序后,分别映射到1~n,这样复杂度就会小很多很多
而这题的难点在于每个数字其实表示的是一个单位长度(并非一个点),这样普通的离散化会造成许多错误
给出下面两个简单的例子应该能体现普通离散化的缺陷:
1-10 1-4 5-10
1-10 1-4 6-10
为了解决这种缺陷,我们可以在排序后的数组上加些处理,比如说[1,2,6,10]
如果相邻数字间距大于1的话,在其中加上任意一个数字,比如加成[1,2,3,6,7,10],然后再做线段树就好了.
线段树中每个点表示的是最后显示哪个海报。
关于DISCUSS里的数据疑问,感觉这个帖子讲的挺好的,推荐一下:http://poj.org/showmessage?message_id=164890
代码:
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<map>
#define ll long long
#define pi acos(-1)
#define inf 0x3f3f3f3f
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
using namespace std;
typedef pair<int,int>P;
const int MAXN=10010;
int L[MAXN],R[MAXN],hash[MAXN<<2],book[MAXN<<2];
int col[MAXN<<4];
void pushdown(int rt)
{
if(col[rt]!=-1)
{
col[rt<<1]=col[rt<<1|1]=col[rt];
col[rt]=-1;
return ;
}
}
void update(int L,int R,int id,int l,int r,int rt)
{
if(L<=l&&r<=R)
{
col[rt]=id;
return ;
}
pushdown(rt);
int mid=(l+r)>>1;
if(L<=mid)update(L,R,id,lson);
if(R>mid)update(L,R,id,rson);
}
void query(int l,int r,int rt)
{
if(l==r)
{
if(col[rt]!=-1)
book[col[rt]]=1;
return ;
}
pushdown(rt);
int mid=(l+r)>>1;
query(lson);
query(rson);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,cnt=0,ans=0;
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%d%d",L+i,R+i);
hash[cnt++]=L[i];
hash[cnt++]=R[i];
}
sort(hash,hash+cnt);
cnt=unique(hash,hash+cnt)-hash;
for(int i=cnt-1;i>0;i--)
if(hash[i]>hash[i-1]+1)
hash[cnt++]=hash[i-1]+1;
sort(hash,hash+cnt);
memset(col,-1,sizeof(col));
for(int i=0;i<n;i++)
{
int l=lower_bound(hash,hash+cnt,L[i])-hash;//找到原数据离散化后对应的数
int r=lower_bound(hash,hash+cnt,R[i])-hash;
update(l,r,i,0,cnt-1,1);
}
memset(book,0,sizeof(book));
query(0,cnt-1,1);
for(int i=0;i<cnt;i++)ans+=book[i];
printf("%d\n",ans);
}
return 0;
}