传送门:HDU6060
题意:给出一颗n个节点的树,要求将2-n号节点分成k部分,然后再将每一部分加上1号节点,定义每一部分的val为其中的点在原图上的最小斯坦纳树,问总的val最大可能是多少。
最小斯坦纳树乍一看很唬人,其实由于原图是棵树,那么其实就是最小生成树,并且由于原图就是树,其实并没有最小生成树这一说。。就是让s集合中的点在原图上连通所需要的边权。
官方题解:
把1看成整棵树的根. 问题相当于把2∼n每个点一个[1,k]的标号. 然后根据最小斯坦纳树的定义, (x,fax) 这条边的贡献是 x 子树内不同标号的个数目difi. 那么显然有difi≤min(k,szi), szi表示子树大小. 可以通过构造让所有difi都取到最大值. 所以答案就是∑x=2nw[x][fax]∗min(szx,k)时间复杂度O(n).
fax就是x的父节点。
稍微画画图就很容易明白。
比赛的时候就是傻逼。
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define MAXN 1000010
struct node
{
int v, w;
node(){}
node(int _v, int _w) : v(_v), w(_w){}
};
vector<node> mp[MAXN];
int sz[MAXN], pre[MAXN];
void dfs(int u, int fa)
{
sz[u] = 1;
for(int i = 0; i < mp[u].size(); i++)
{
int v = mp[u][i].v;
if(v == fa) continue;
pre[v] = mp[u][i].w;
dfs(v, u);
sz[u] += sz[v];
}
}
int main()
{
int n, k;
while(cin >> n >> k)
{
int u, v, w;
for(int i = 1; i < n; i++)
{
scanf("%d %d %d", &u, &v, &w);
mp[u].push_back(node(v, w));
mp[v].push_back(node(u,w));
}
dfs(1, -1);
ll ans = 0;
for(int i = 1; i <= n; i++)
{
ans += 1ll * pre[i] * min(sz[i], k);
}
cout << ans << endl;
for(int i = 1; i <= n; i++)
mp[i].clear();
}
}