HDU 6060 RXD and dividing 思维 + dfs

54 篇文章 0 订阅
30 篇文章 0 订阅

传送门:HDU6060

题意:给出一颗n个节点的树,要求将2-n号节点分成k部分,然后再将每一部分加上1号节点,定义每一部分的val为其中的点在原图上的最小斯坦纳树,问总的val最大可能是多少。

最小斯坦纳树乍一看很唬人,其实由于原图是棵树,那么其实就是最小生成树,并且由于原图就是树,其实并没有最小生成树这一说。。就是让s集合中的点在原图上连通所需要的边权。

官方题解:

把1看成整棵树的根. 问题相当于把2∼n2\sim n2n每个点一个[1,k][1, k][1,k]的标号. 然后根据最小斯坦纳树的定义, (x,fax)(x, fa_x)(x,fax) 这条边的贡献是 x 子树内不同标号的个数目difidif_idifi. 那么显然有difi≤min(k,szi)dif_i\leq min(k, sz_i)difimin(k,szi)szisz_iszi表示子树大小. 可以通过构造让所有difidif_idifi都取到最大值. 所以答案就是∑x=2nw[x][fax]∗min(szx,k)\sum_{x = 2}^{n}{w[x][fa_x] * min(sz_x, k)}x=2nw[x][fax]min(szx,k)时间复杂度O(n)O(n)O(n).

fax就是x的父节点。

稍微画画图就很容易明白。

比赛的时候就是傻逼。

代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define MAXN 1000010
struct node
{
    int v, w;
    node(){}
    node(int _v, int _w) : v(_v), w(_w){}
};
vector<node> mp[MAXN];
int sz[MAXN], pre[MAXN];
void dfs(int u, int fa)
{
    sz[u] = 1;
    for(int i = 0; i < mp[u].size(); i++)
    {
        int v = mp[u][i].v;
        if(v == fa) continue;
        pre[v] = mp[u][i].w;
        dfs(v, u);
        sz[u] += sz[v];
    }
}
int main()
{
    int n, k;
    while(cin >> n >> k)
    {
        int u, v, w;
        for(int i = 1; i < n; i++)
        {
            scanf("%d %d %d", &u, &v, &w);
            mp[u].push_back(node(v, w));
            mp[v].push_back(node(u,w));
        }
        dfs(1, -1);
        ll ans = 0;
        for(int i = 1; i <= n; i++)
        {
            ans += 1ll * pre[i] * min(sz[i], k);
        }
        cout << ans << endl;
        for(int i = 1; i <= n; i++)
            mp[i].clear();
    }
}


2∼n2\sim

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值