Codeforces 869 E. The Untended Antiquity 二维树状数组

传送门:Codeforces 869E

题意:在一个n×m的方格板上,操作1将一个矩形区域的边界上加上一圈障碍,操作2将一个矩形区域的边界上的障碍移除,操作3询问两点是否能不越过障碍互相到达。题目保证任意两圈矩形障碍不会相交。

思路:很容易想到二维树状数组实现区间更新点查询,但是如果只是简单的+1,-1更新的话是无法判断出两点是否可以不经过障碍可达的。因此我们要把每一圈障碍都哈希出一个不同的值,这样点查询的时候只要判断两个点的值是否相同就行了。

ps:这题暴力差分也能卡过。。见:点击打开链接   对此我只想说。。毛子的评测机就是快!

代码:

#include<bits/stdc++.h>
#define ll long long
#define lowbit(x) (x & -x)
#define MAXN 2525 
using namespace std;
ll bit[MAXN][MAXN];
int n, m;
void add(int i, int j, ll delta)
{
	for(int x = i; x < n + 10; x += lowbit(x))
	for(int y = j; y < m + 10; y += lowbit(y))
	bit[x][y] += delta;
}
ll sum(int i, int j)
{
	ll ans = 0;
	for(int x = i; x; x -= lowbit(x))
	for(int y = j; y; y -= lowbit(y))
	ans += bit[x][y];
	return ans;
}
void update(int r1, int c1, int r2, int c2, ll delta)
{
	add(r1, c1, delta);
	add(r1, c2 + 1, -delta);
	add(r2 + 1, c1, -delta);
	add(r2 + 1, c2 + 1, delta); 
}
int main()
{
	int q, t, r1, c1, r2, c2;
	cin >> n >> m >> q;
	while(q--){
		scanf("%d %d %d %d %d", &t, &r1, &c1, &r2, &c2);
		if(t != 3){
			ll delta = r1;
			delta = delta * 111 + c1;
			delta = delta * 111 + r2;
			delta = delta * 111 + c2;
			delta *= (t == 1) ? 1 : -1;
			update(r1, c1, r2, c2, delta);
		}
		else puts(sum(r1, c1) == sum(r2, c2) ? "Yes" : "No");
	}
    return 0;
}


树状数组(Fenwick Tree)是一种用于高效处理区间和查询的数据结构,常用于解一维数组的前缀和、区间更新和查询等问题。 在 Codeforces 上,树状数组常被用来解决一些与区间和查询有关的问题。它可以在 O(logn) 的时间内完成单点更新和查询,以及区间求和等操作。 下面是一个简单的示例代码,展示了如何实现一个基本的树状数组: ```cpp #include <iostream> #include <vector> using namespace std; // 获取最低位的 1 int getLowbit(int x) { return x & -x; } // 树状数组的单点更新操作 void update(vector<int>& fenwick, int index, int delta) { while (index < fenwick.size()) { fenwick[index] += delta; index += getLowbit(index); } } // 树状数组的前缀和查询操作 int query(vector<int>& fenwick, int index) { int sum = 0; while (index > 0) { sum += fenwick[index]; index -= getLowbit(index); } return sum; } int main() { int n; cin >> n; vector<int> fenwick(n + 1, 0); // 初始化树状数组 for (int i = 1; i <= n; i++) { int val; cin >> val; update(fenwick, i, val); } // 进行查询操作 int q; cin >> q; while (q--) { int type; cin >> type; if (type == 1) { int index, delta; cin >> index >> delta; update(fenwick, index, delta); } else if (type == 2) { int l, r; cin >> l >> r; int sum = query(fenwick, r) - query(fenwick, l - 1); cout << sum << endl; } } return 0; } ``` 在这个示例中,我们使用了一个长度为 n 的数组 `fenwick` 来表示树状数组。`update` 函数用于更新树状数组中的某个元素,`query` 函数用于查询树状数组中某个区间的和。 你可以根据具体问题的要求进行相应的修改和扩展。希望对你有所帮助!如果有任何疑问,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值