我的第一篇博客

“你的最实际的梦想是什么?

这是今天毛概课老师问的最多的问题,也恰好也是我一直以来想要找到答案的问题。

从小到大,我一直在按照家里的意见和安排在走,上固定的初中,上他们建议的高中,上他们商量好的大学,学一个完全不懂但是就业前景好的大学。

我到底想要什么?我现在所做的这一切在不知道需要多久之后又会导致怎么样的结果。抽出自己的灵魂,想象一下,你现在所做的一切都已经冥冥之中做了选择。高中时候的学习态度和方式选择了你要上的大学和专业,而大学时候的积累选择了你以后的生活方式、生活品质。

《你好,旧时光》里有一句话让我记忆犹新:如果不知道自己要什么,那就继续往上走,等你处于更高的平台时,选择也就会更多,同时你也就有更大的可能性知道自己想要什么。所以,我想要考研,站在更高的平台看看自己究竟想要什么。

作为一名大二的计算机系的学生,编程的重要性从第一节C语言课程起就在耳边环绕,而我总是不以为然,结果,当我看到周围同学轻轻松松的将代码敲出,并且运行成功的时候,我的心情很复杂,说不羡慕是不可能的,而且编程能力也与日后工作或者研究生生活息息相关,学习编程,实在是刻不容缓啦~

给自己定一个小目标:先从C语言学起,可以独立的编一个中等的程序。

具体怎么学习呢?一直以来,我都是将编程作业当作是任务完成,而且因为之前不会的太多,雪球越滚越大,作业抄别人的代码,自己练习的却很少。多写代码,多练代码,同时将自己的错误用本子记下来。

我计划的是每天都要写代码,每天都练根据自己的时间安排至少一个小时。

我也不知道自己想进哪一家公司,但是我想考西电的研究生,这很难,我知道,但是限定一个高的目标,才有动力让我每天克服拖延症和懒癌呐~

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Matplotlib是Python中最流行的数据可视化库之一。它可以绘制各种类型的图表,从简单的线图到复杂的三维图表。与其他绘图库相比,Matplotlib具有许多优点,例如易于学习和使用、广泛的文档和社区支持等等。本篇博客将介绍Matplotlib的基础知识和常用技巧。 Matplotlib基础知识: Matplotlib是一个面向对象的绘图库,它具有许多对象和方法。下面是Matplotlib对象的一些基本概念: 1. Figure:画布,它是最外层的容器。 2. Axes:坐标轴,它是Figure中的一个子对象。 3. Axis:X轴或Y轴,它是Axes对象的一部分。 4. Artist:图表中的所有部分,例如标题、标签、线条等等,都是Artist对象的实例。 要使用Matplotlib绘制图表,首先必须创建一个Figure对象,然后在其中添加一个或多个Axes对象。接下来,使用Axes对象的方法来添加Artist对象。 下面是一个简单的代码示例: ```python import matplotlib.pyplot as plt # 创建Figure和Axes对象 fig, ax = plt.subplots() # 添加Artist对象 ax.plot([1, 2, 3, 4], [1, 4, 2, 3]) # 显示图表 plt.show() ``` 在这个例子中,我们创建了一个Figure对象和一个Axes对象,然后在Axes对象中添加了一条线。最后,我们调用show()函数来显示图表。 常用技巧: 1. 设置图表样式: Matplotlib提供了许多方法来设置图表样式,例如设置标题、标签、颜色、线型、线宽等等。可以通过调用Axes对象的方法来实现。例如: ```python # 设置标题 ax.set_title('My First Matplotlib Chart') # 设置X轴标签 ax.set_xlabel('X Label') # 设置Y轴标签 ax.set_ylabel('Y Label') # 设置线条颜色 ax.plot(x, y, color='r') # 设置线条线型 ax.plot(x, y, linestyle='--') # 设置线条线宽 ax.plot(x, y, linewidth=2) ``` 2. 绘制多个子图: Matplotlib可以在一个Figure对象中绘制多个子图。可以使用subplot()函数来创建子图,该函数将返回一个Axes对象,在其中添加Artist对象。例如: ```python # 创建一个2x2的子图 fig, axs = plt.subplots(2, 2) # 在第一个子图中绘制一条线 axs[0, 0].plot(x, y) # 在第二个子图中绘制散点图 axs[0, 1].scatter(x, y) # 在第三个子图中绘制条形图 axs[1, 0].bar(x, y) # 在第四个子图中绘制饼图 axs[1, 1].pie(y) ``` 3. 保存图表: Matplotlib可以将图表保存为PNG、PDF、SVG等格式。可以使用savefig()函数来保存图表,该函数将文件路径作为参数。例如: ```python # 保存图表为PNG格式 plt.savefig('mychart.png') # 保存图表为PDF格式 plt.savefig('mychart.pdf') # 保存图表为SVG格式 plt.savefig('mychart.svg') ``` 总结: Matplotlib是一个强大的数据可视化库,可以绘制各种类型的图表。本篇博客介绍了Matplotlib的基础知识和常用技巧,希望能够帮助初学者更快地上手Matplotlib。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值